Suppr超能文献

基于动态神经图的联邦爬虫在医疗保健应用中的半监督多任务处理

Dynamic Neural Graphs Based Federated Reptile for Semi-Supervised Multi-Tasking in Healthcare Applications.

出版信息

IEEE J Biomed Health Inform. 2022 Apr;26(4):1761-1772. doi: 10.1109/JBHI.2021.3134835. Epub 2022 Apr 14.

Abstract

AI healthcare applications rely on sensitive electronic healthcare records (EHRs) that are scarcely labelled and are often distributed across a network of the symbiont institutions. It is challenging to train the effective machine learning models on such data. In this work, we propose dynamic neural graphs based federated learning framework to address these challenges. The proposed framework extends Reptile, a model agnostic meta-learning (MAML) algorithm, to a federated setting. However, unlike the existing MAML algorithms, this paper proposes a dynamic variant of neural graph learning (NGL) to incorporate unlabelled examples in the supervised training setup. Dynamic NGL computes a meta-learning update by performing supervised learning on a labelled training example while performing metric learning on its labelled or unlabelled neighbourhood. This neighbourhood of a labelled example is established dynamically using local graphs built over the batches of training examples. Each local graph is constructed by comparing the similarity between embedding generated by the current state of the model. The introduction of metric learning on the neighbourhood makes this framework semi-supervised in nature. The experimental results on the publicly available MIMIC-III dataset highlight the effectiveness of the proposed framework for both single and multi-task settings under data decentralisation constraints and limited supervision.

摘要

人工智能医疗应用依赖于敏感的电子医疗记录 (EHRs),这些记录几乎没有标记,并且通常分布在共生机构的网络中。在这些数据上训练有效的机器学习模型具有挑战性。在这项工作中,我们提出了基于动态神经图的联邦学习框架来解决这些挑战。所提出的框架将 Reptile(一种与模型无关的元学习 (MAML) 算法)扩展到联邦设置。然而,与现有的 MAML 算法不同,本文提出了神经图学习 (NGL) 的动态变体,以在监督训练设置中纳入未标记的示例。动态 NGL 通过在标记训练示例上执行监督学习,同时在其标记或未标记的邻域上执行度量学习来计算元学习更新。使用在训练示例批次上构建的本地图来动态建立标记示例的邻域。每个本地图都是通过比较当前模型状态生成的嵌入之间的相似性来构建的。在邻域上进行度量学习的引入使该框架具有半监督性质。在公开的 MIMIC-III 数据集上的实验结果突出了该框架在数据去中心化约束和有限监督下的单任务和多任务设置下的有效性。

相似文献

4
Personalized Federated Graph Learning on Non-IID Electronic Health Records.基于非独立同分布电子健康记录的个性化联邦图学习。
IEEE Trans Neural Netw Learn Syst. 2024 Sep;35(9):11843-11856. doi: 10.1109/TNNLS.2024.3370297. Epub 2024 Sep 3.
7
FedMix: Mixed Supervised Federated Learning for Medical Image Segmentation.FedMix:用于医学图像分割的混合监督联邦学习。
IEEE Trans Med Imaging. 2023 Jul;42(7):1955-1968. doi: 10.1109/TMI.2022.3233405. Epub 2023 Jun 30.

引用本文的文献

本文引用的文献

4
Federated learning of predictive models from federated Electronic Health Records.从联邦电子健康记录中联合学习预测模型。
Int J Med Inform. 2018 Apr;112:59-67. doi: 10.1016/j.ijmedinf.2018.01.007. Epub 2018 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验