Suppr超能文献

利用结构化医疗数据进行医疗保健中的联邦学习。

Federated Learning in Health care Using Structured Medical Data.

机构信息

Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.

Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Data-Driven and Digital Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.

出版信息

Adv Kidney Dis Health. 2023 Jan;30(1):4-16. doi: 10.1053/j.akdh.2022.11.007.

Abstract

The success of machine learning-based studies is largely subjected to accessing a large amount of data. However, accessing such data is typically not feasible within a single health system/hospital. Although multicenter studies are the most effective way to access a vast amount of data, sharing data outside the institutes involves legal, business, and technical challenges. Federated learning (FL) is a newly proposed machine learning framework for multicenter studies, tackling data-sharing issues across participant institutes. The promise of FL is simple. FL facilitates multicenter studies without losing data access control and allows the construction of a global model by aggregating local models trained from participant institutes. This article reviewed recently published studies that utilized FL in clinical studies with structured medical data. In addition, challenges and open questions in FL in clinical studies with structured medical data were discussed.

摘要

基于机器学习的研究的成功在很大程度上取决于能否访问大量数据。然而,在单个医疗系统/医院内部,通常无法访问此类数据。虽然多中心研究是获取大量数据的最有效方法,但在机构之外共享数据涉及法律、商业和技术方面的挑战。联邦学习(FL)是一种新提出的用于多中心研究的机器学习框架,可解决参与者机构之间的数据共享问题。FL 的承诺很简单。FL 允许在不失去数据访问控制的情况下进行多中心研究,并通过汇总来自参与者机构的本地模型来构建全局模型。本文回顾了最近发表的利用 FL 进行结构化医疗数据临床研究的研究。此外,还讨论了在结构化医疗数据的临床研究中使用 FL 所面临的挑战和尚未解决的问题。

相似文献

5
Survey of Medical Applications of Federated Learning.联邦学习的医学应用综述。
Healthc Inform Res. 2024 Jan;30(1):3-15. doi: 10.4258/hir.2024.30.1.3. Epub 2024 Jan 31.

引用本文的文献

3
Consumer Health Informatics to Advance Precision Prevention.促进精准预防的消费者健康信息学
Yearb Med Inform. 2024 Aug;33(1):149-157. doi: 10.1055/s-0044-1800735. Epub 2025 Apr 8.
5
Current state of data stewardship tools in life science.生命科学领域数据管理工具的现状
Front Big Data. 2024 Sep 16;7:1428568. doi: 10.3389/fdata.2024.1428568. eCollection 2024.

本文引用的文献

2
Larynx cancer survival model developed through open-source federated learning.通过开源联邦学习开发的喉癌生存模型。
Radiother Oncol. 2022 Nov;176:179-186. doi: 10.1016/j.radonc.2022.09.023. Epub 2022 Oct 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验