School of Cyber Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
School of Cyber Science and Technology, Shandong University, Qingdao, 266237, Shandong, China; The Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong University, Jinan, 250100, Shandong, China; Quan Cheng Laboratory, Jinan, 250103, Shandong, China.
Neural Netw. 2024 Nov;179:106574. doi: 10.1016/j.neunet.2024.106574. Epub 2024 Jul 25.
Graph neural networks (GNN) are widely used in recommendation systems, but traditional centralized methods raise privacy concerns. To address this, we introduce a federated framework for privacy-preserving GNN-based recommendations. This framework allows distributed training of GNN models using local user data. Each client trains a GNN using its own user-item graph and uploads gradients to a central server for aggregation. To overcome limited data, we propose expanding local graphs using Software Guard Extension (SGX) and Local Differential Privacy (LDP). SGX computes node intersections for subgraph exchange and expansion, while local differential privacy ensures privacy. Additionally, we introduce a personalized approach with Prototype Networks (PN) and Model-Agnostic Meta-Learning (MAML) to handle data heterogeneity. This enhances the encoding abilities of the federated meta-learner, enabling precise fine-tuning and quick adaptation to diverse client graph data. We leverage SGX and local differential privacy for secure parameter sharing and defense against malicious servers. Comprehensive experiments across six datasets demonstrate our method's superiority over centralized GNN-based recommendations, while preserving user privacy.
图神经网络 (GNN) 在推荐系统中得到了广泛应用,但传统的集中式方法引发了隐私问题。针对这一问题,我们引入了一种基于联邦框架的隐私保护 GNN 推荐方法。该框架允许使用本地用户数据对 GNN 模型进行分布式训练。每个客户端都使用自己的用户-项目图来训练 GNN,并将梯度上传到中央服务器进行聚合。为了克服数据有限的问题,我们提出使用软件保护扩展 (SGX) 和本地差分隐私 (LDP) 来扩展本地图。SGX 计算子图交换和扩展的节点交集,而本地差分隐私则确保了隐私性。此外,我们引入了一种使用原型网络 (PN) 和模型不可知元学习 (MAML) 的个性化方法来处理数据异质性。这增强了联邦元学习器的编码能力,使其能够对不同客户端的图数据进行精确的微调并快速适应。我们利用 SGX 和本地差分隐私进行安全参数共享和防御恶意服务器。在六个数据集上的综合实验表明,我们的方法在保护用户隐私的同时,优于基于集中式 GNN 的推荐方法。