Suppr超能文献

评估与乳腺癌组织学分级相关的数字病理学成像生物标志物。

Assessment of Digital Pathology Imaging Biomarkers Associated with Breast Cancer Histologic Grade.

机构信息

Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.

Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada.

出版信息

Curr Oncol. 2021 Oct 27;28(6):4298-4316. doi: 10.3390/curroncol28060366.

Abstract

BACKGROUND

Evaluating histologic grade for breast cancer diagnosis is standard and associated with prognostic outcomes. Current challenges include the time required for manual microscopic evaluation and interobserver variability. This study proposes a computer-aided diagnostic (CAD) pipeline for grading tumors using artificial intelligence.

METHODS

There were 138 patients included in this retrospective study. Breast core biopsy slides were prepared using standard laboratory techniques, digitized, and pre-processed for analysis. Deep convolutional neural networks (CNNs) were developed to identify the regions of interest containing malignant cells and to segment tumor nuclei. Imaging-based features associated with spatial parameters were extracted from the segmented regions of interest (ROIs). Clinical datasets and pathologic biomarkers (estrogen receptor, progesterone receptor, and human epidermal growth factor 2) were collected from all study subjects. Pathologic, clinical, and imaging-based features were input into machine learning (ML) models to classify histologic grade, and model performances were tested against ground-truth labels at the patient-level. Classification performances were evaluated using receiver-operating characteristic (ROC) analysis.

RESULTS

Multiparametric feature sets, containing both clinical and imaging-based features, demonstrated high classification performance. Using imaging-derived markers alone, the classification performance demonstrated an area under the curve (AUC) of 0.745, while modeling these features with other pathologic biomarkers yielded an AUC of 0.836.

CONCLUSION

These results demonstrate an association between tumor nuclear spatial features and tumor grade. If further validated, these systems may be implemented into pathology CADs and can assist pathologists to expeditiously grade tumors at the time of diagnosis and to help guide clinical decisions.

摘要

背景

评估乳腺癌诊断的组织学分级是标准操作,与预后结果相关。目前的挑战包括手动显微镜评估所需的时间和观察者间的变异性。本研究提出了一种使用人工智能对肿瘤进行分级的计算机辅助诊断(CAD)管道。

方法

本回顾性研究纳入了 138 例患者。使用标准实验室技术制备乳腺核心活检切片,对其进行数字化处理,并进行预处理以进行分析。开发了深度卷积神经网络(CNN)来识别包含恶性细胞的感兴趣区域并对肿瘤细胞核进行分割。从分割的感兴趣区域(ROI)中提取与空间参数相关的基于成像的特征。从所有研究对象中收集临床数据集和病理生物标志物(雌激素受体、孕激素受体和人表皮生长因子 2)。将病理、临床和基于成像的特征输入机器学习(ML)模型以对组织学分级进行分类,并在患者水平上针对真实标签测试模型性能。使用接收者操作特征(ROC)分析评估分类性能。

结果

包含临床和基于成像的特征的多参数特征集表现出较高的分类性能。仅使用基于成像的标记,分类性能的 AUC 为 0.745,而将这些特征与其他病理生物标志物建模时,AUC 为 0.836。

结论

这些结果表明肿瘤核空间特征与肿瘤分级之间存在关联。如果进一步验证,这些系统可以被实施到病理 CAD 中,并可以帮助病理学家在诊断时快速对肿瘤进行分级,并帮助指导临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffe3/8628688/63cf31e00acf/curroncol-28-00366-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验