College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom.
A.P. Ershov Institute of Informatics Systems, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
PLoS Comput Biol. 2021 Dec 13;17(12):e1009654. doi: 10.1371/journal.pcbi.1009654. eCollection 2021 Dec.
How does the brain process sensory stimuli, and decide whether to initiate locomotor behaviour? To investigate this question we develop two whole body computer models of a tadpole. The "Central Nervous System" (CNS) model uses evidence from whole-cell recording to define 2300 neurons in 12 classes to study how sensory signals from the skin initiate and stop swimming. In response to skin stimulation, it generates realistic sensory pathway spiking and shows how hindbrain sensory memory populations on each side can compete to initiate reticulospinal neuron firing and start swimming. The 3-D "Virtual Tadpole" (VT) biomechanical model with realistic muscle innervation, body flexion, body-water interaction, and movement is then used to evaluate if motor nerve outputs from the CNS model can produce swimming-like movements in a volume of "water". We find that the whole tadpole VT model generates reliable and realistic swimming. Combining these two models opens new perspectives for experiments.
大脑如何处理感觉刺激,并决定是否启动运动行为?为了研究这个问题,我们开发了两个基于整体身体的计算机模型的蝌蚪。“中枢神经系统”(CNS)模型使用来自全细胞记录的证据来定义 12 类中的 2300 个神经元,以研究来自皮肤的感觉信号如何启动和停止游泳。它对皮肤刺激做出反应,产生现实的感觉通路尖峰,并展示了如何通过每侧的后脑感觉记忆群体竞争来启动网状脊髓神经元的发射并开始游泳。然后使用具有真实肌肉神经支配、身体弯曲、身体与水相互作用和运动的 3-D“虚拟蝌蚪”(VT)生物力学模型来评估 CNS 模型的运动神经输出是否可以在“水”的体积中产生类似游泳的运动。我们发现,整个蝌蚪 VT 模型产生了可靠和现实的游泳运动。将这两个模型结合起来为实验开辟了新的视角。