Suppr超能文献

在高性能计算基础设施上部署和优化大规模脉冲神经网络的具身模拟

Deploying and Optimizing Embodied Simulations of Large-Scale Spiking Neural Networks on HPC Infrastructure.

作者信息

Feldotto Benedikt, Eppler Jochen Martin, Jimenez-Romero Cristian, Bignamini Christopher, Gutierrez Carlos Enrique, Albanese Ugo, Retamino Eloy, Vorobev Viktor, Zolfaghari Vahid, Upton Alex, Sun Zhe, Yamaura Hiroshi, Heidarinejad Morteza, Klijn Wouter, Morrison Abigail, Cruz Felipe, McMurtrie Colin, Knoll Alois C, Igarashi Jun, Yamazaki Tadashi, Doya Kenji, Morin Fabrice O

机构信息

Robotics, Artificial Intelligence and Real-Time Systems, Faculty of Informatics, Technical University of Munich, Munich, Germany.

Simulation and Data Lab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany.

出版信息

Front Neuroinform. 2022 May 19;16:884180. doi: 10.3389/fninf.2022.884180. eCollection 2022.

Abstract

Simulating the brain-body-environment trinity in closed loop is an attractive proposal to investigate how perception, motor activity and interactions with the environment shape brain activity, and vice versa. The relevance of this embodied approach, however, hinges entirely on the modeled complexity of the various simulated phenomena. In this article, we introduce a software framework that is capable of simulating large-scale, biologically realistic networks of spiking neurons embodied in a biomechanically accurate musculoskeletal system that interacts with a physically realistic virtual environment. We deploy this framework on the high performance computing resources of the EBRAINS research infrastructure and we investigate the scaling performance by distributing computation across an increasing number of interconnected compute nodes. Our architecture is based on requested compute nodes as well as persistent virtual machines; this provides a high-performance simulation environment that is accessible to multi-domain users without expert knowledge, with a view to enable users to instantiate and control simulations at custom scale via a web-based graphical user interface. Our simulation environment, entirely open source, is based on the Neurorobotics Platform developed in the context of the Human Brain Project, and the NEST simulator. We characterize the capabilities of our parallelized architecture for large-scale embodied brain simulations through two benchmark experiments, by investigating the effects of scaling compute resources on performance defined in terms of experiment runtime, brain instantiation and simulation time. The first benchmark is based on a large-scale balanced network, while the second one is a multi-region embodied brain simulation consisting of more than a million neurons and a billion synapses. Both benchmarks clearly show how scaling compute resources improves the aforementioned performance metrics in a near-linear fashion. The second benchmark in particular is indicative of both the potential and limitations of a highly distributed simulation in terms of a trade-off between computation speed and resource cost. Our simulation architecture is being prepared to be accessible for everyone as an EBRAINS service, thereby offering a community-wide tool with a unique workflow that should provide momentum to the investigation of closed-loop embodiment within the computational neuroscience community.

摘要

在闭环中模拟脑-身-环境三位一体是一个很有吸引力的提议,可用于研究感知、运动活动以及与环境的相互作用如何塑造大脑活动,反之亦然。然而,这种具身方法的相关性完全取决于各种模拟现象的建模复杂性。在本文中,我们介绍了一个软件框架,该框架能够模拟大规模、具有生物真实性的脉冲神经元网络,这些网络体现在一个生物力学精确的肌肉骨骼系统中,并与一个物理逼真的虚拟环境相互作用。我们将此框架部署在EBRAINS研究基础设施的高性能计算资源上,并通过在越来越多的互连计算节点上分布计算来研究其扩展性能。我们的架构基于请求的计算节点以及持久虚拟机;这提供了一个高性能模拟环境,多领域用户无需专业知识即可访问,目的是让用户能够通过基于网络的图形用户界面在自定义规模上实例化和控制模拟。我们的模拟环境完全开源,基于人类大脑计划背景下开发的神经机器人平台和NEST模拟器。我们通过两个基准实验来表征我们的并行化架构用于大规模具身大脑模拟的能力,即研究扩展计算资源对以实验运行时间、大脑实例化和模拟时间定义的性能的影响。第一个基准基于大规模平衡网络,而第二个是由超过一百万个神经元和十亿个突触组成的多区域具身大脑模拟。两个基准都清楚地表明扩展计算资源如何以近线性方式改善上述性能指标。特别是第二个基准表明了在计算速度和资源成本之间进行权衡时,高度分布式模拟的潜力和局限性。我们的模拟架构正准备作为EBRAINS服务供所有人使用,从而提供一个具有独特工作流程的全社区工具,应为计算神经科学界内闭环具身研究提供动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf60/9160925/499e52226844/fninf-16-884180-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验