Suppr超能文献

基于机器学习对简化深部脑刺激电极模型患者组织中磁共振成像诱导的功率吸收进行预测。

Machine learning-based prediction of MRI-induced power absorption in the tissue in patients with simplified deep brain stimulation lead models.

作者信息

Vu Jasmine, Nguyen Bach T, Bhusal Bhumi, Baraboo Justin, Rosenow Joshua, Bagci Ulas, Bright Molly G, Golestanirad Laleh

机构信息

Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

出版信息

IEEE Trans Electromagn Compat. 2021 Oct;63(5):1757-1766. doi: 10.1109/temc.2021.3106872. Epub 2021 Sep 30.

Abstract

Interaction of an active electronic implant such as a deep brain stimulation (DBS) system and MRI RF fields can induce excessive tissue heating, limiting MRI accessibility. Efforts to quantify RF heating mostly rely on electromagnetic (EM) simulations to assess individualized specific absorption rate (SAR), but such simulations require extensive computational resources. Here, we investigate if a predictive model using machine learning (ML) can predict the local SAR in the tissue around tips of implanted leads from the distribution of the tangential component of the MRI incident electric field, E. A dataset of 260 unique patient-derived and artificial DBS lead trajectories was constructed, and the 1 g-averaged SAR, 1gSAR, at the lead-tip during 1.5 T MRI was determined by EM simulations. E values along each lead's trajectory and the simulated SAR values were used to train and test the ML algorithm. The resulting predictions of the ML algorithm indicated that the distribution of E could effectively predict 1gSAR at the DBS lead-tip (R = 0.82). Our results indicate that ML has the potential to provide a fast method for predicting MR-induced power absorption in the tissue around tips of implanted leads such as those in active electronic medical devices.

摘要

诸如深部脑刺激(DBS)系统等有源电子植入物与MRI射频场的相互作用会导致组织过度发热,从而限制了MRI的可及性。量化射频加热的努力大多依赖于电磁(EM)模拟来评估个体化的比吸收率(SAR),但这种模拟需要大量的计算资源。在此,我们研究使用机器学习(ML)的预测模型是否能够根据MRI入射电场切向分量E的分布来预测植入电极尖端周围组织中的局部SAR。构建了一个包含260条独特的患者来源和人工DBS电极轨迹的数据集,并通过EM模拟确定了1.5 T MRI期间电极尖端处的1 g平均SAR(1gSAR)。沿着每条电极轨迹的E值和模拟的SAR值被用于训练和测试ML算法。ML算法的最终预测结果表明,E的分布能够有效预测DBS电极尖端处的1gSAR(R = 0.82)。我们的结果表明,ML有潜力提供一种快速方法,用于预测有源电子医疗设备中植入电极尖端周围组织的磁共振诱导功率吸收。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验