The School of Information Engineering, Nanchang University, Jiangxi, 330031, China.
The School of Information Engineering, Nanchang University, Jiangxi, 330031, China.
Comput Biol Med. 2021 Jul;134:104449. doi: 10.1016/j.compbiomed.2021.104449. Epub 2021 May 11.
Medical image segmentation is a typical task in medical image processing and critical foundation in medical image analysis. U-Net is well-liked in medical image segmentation, but it doesn't fully explore useful features of the channel and capitalize on the contextual information. Therefore, we present an improved U-Net with residual connections, adding a plug-and-play, very portable channel attention (CA) block and a hybrid dilated attention convolutional (HDAC) layer to perform medical image segmentation for different tasks accurately and effectively, and call it HDA-ResUNet, in which we fully utilize advantages of U-Net, attention mechanism and dilated convolution. In contrast to the simple copy splicing of U-Net in the skip connection, the channel attention block is inserted into the extracted feature map of the encoding path before decoding operation. Since this block is lightweight, we can apply it to multiple layers in the backbone network to optimize the channel effect of this layer's coding operation. In addition, the convolutional layer at the bottom of the "U"-shaped network is replaced by a hybrid dilated attention convolutional (HDAC) layer to fuse information from different sizes of receptive fields. The proposed HDA-ResUNet is evaluated on four datasets: liver and tumor segmentation (LiTS 2017), lung segmentation (Lung dataset), nuclear segmentation in microscope images (DSB 2018) and neuron structure segmentation (ISBI 2012). The dice global scores of liver and tumor segmentation (LiTS 2017) reach 0.949 and 0.799. The dice coefficients of lung segmentation and nuclear segmentation are 0.9797 and 0.9081 respectively, and the information theoretic score for the last one is 0.9703. The segmentation results are all more accurate than U-Net with fewer parameters, and the problem of slow convergence speed of U-Net on DBS 2018 is solved.
医学图像分割是医学图像处理中的一个典型任务,也是医学图像分析的关键基础。U-Net 在医学图像分割中很受欢迎,但它没有充分挖掘通道的有用特征,也没有充分利用上下文信息。因此,我们提出了一种带有残差连接的改进 U-Net,添加了一个即插即用、非常便携的通道注意力(CA)模块和一个混合扩张注意力卷积(HDAC)层,以准确有效地执行不同任务的医学图像分割,并将其称为 HDA-ResUNet,其中我们充分利用了 U-Net、注意力机制和扩张卷积的优势。与 U-Net 在跳过连接中的简单复制拼接不同,通道注意力模块被插入到编码路径中提取的特征图中,然后进行解码操作。由于该模块很轻量级,我们可以将其应用于骨干网络中的多个层,以优化该层编码操作的通道效果。此外,“U”形网络底部的卷积层被替换为混合扩张注意力卷积(HDAC)层,以融合来自不同大小感受野的信息。所提出的 HDA-ResUNet 在四个数据集上进行了评估:肝脏和肿瘤分割(LiTS 2017)、肺分割(Lung 数据集)、显微镜图像中的核分割(DSB 2018)和神经元结构分割(ISBI 2012)。肝脏和肿瘤分割(LiTS 2017)的 Dice 全局得分达到 0.949 和 0.799。肺分割和核分割的 Dice 系数分别为 0.9797 和 0.9081,最后一个的信息论分数为 0.9703。分割结果都比 U-Net 更准确,同时减少了参数,并且解决了 U-Net 在 DBS 2018 上收敛速度慢的问题。