Suppr超能文献

使用 MMRFBiolinks R 包发现多发性骨髓瘤的预后标志物。

Using MMRFBiolinks R-Package for Discovering Prognostic Markers in Multiple Myeloma.

机构信息

University Magna Graecia of Catanzaro, Catanzaro, Italy.

出版信息

Methods Mol Biol. 2022;2401:289-314. doi: 10.1007/978-1-0716-1839-4_19.

Abstract

Multiple myeloma (MM) is the second most frequent hematological malignancy in the world although the related pathogenesis remains unclear. Gene profiling studies, commonly carried out through next-generation sequencing (NGS) and Microarrays technologies, represent powerful tools for discovering prognostic markers in MM. NGS technologies have made great leaps forward both economically and technically gaining in popularity. As NGS techniques becomes simpler and cheaper, researchers choose NGS over microarrays for more of their genomic applications. However, Microarrays still provide significant benefits with respect to NGS. For instance, RNA-Seq requires more complex bioinformatic analysis with respect to Microarray as well as it lacks of standardized protocols for analysis. Therefore, a synergy between the two technologies may be well expected in the future. In order to take up this challenge, a valid tool for integrative analysis of MM data retrieved through NGS techniques is MMRFBiolinks, a new R package for integrating and analyzing datasets from the Multiple Myeloma Research Foundation (MMRF) CoMMpass (Clinical Outcomes in MM to Personal Assessment of Genetic Profile) study, available at MMRF Researcher Gateway (MMRF-RG), and at the National Cancer Institute Genomic Data Commons (NCI-GDC) Data Portal. Instead of developing a completely new package from scratch, we decided to leverage TC-GABiolinks, an R/Bioconductor package, because it provides some useful methods to access and analyze MMRF-CoMMpass data. An integrative analysis workflow based on the usage of MMRFBiolinks is illustrated.In particular, it leads towards a comparative analysis of RNA-Seq data stored at GDC Data Portal that allows to carry out a Kaplan Meier (KM ) Survival Analysis and an enrichment analysis for a Differential Gene Expression (DGE) gene set.Furthermore, it deals with MMRF-RG data for analyzing the correlation between canonical variants and treatment outcome as well as treatment class. In order to show the potential of the workflow, we present two case studies. The former deals with data of MM Bone Marrow sample types available at GDC Data Portal. The latter deals with MMRF-RG data for analyzing the correlation between canonical variants in a gene set obtained from the case study 1 and the treatment outcome as well as the treatment class.

摘要

多发性骨髓瘤(MM)是世界上第二常见的血液系统恶性肿瘤,但其相关发病机制尚不清楚。基因谱研究,通常通过下一代测序(NGS)和微阵列技术进行,是发现 MM 预后标志物的有力工具。NGS 技术在经济和技术上都取得了巨大的飞跃,越来越受欢迎。随着 NGS 技术变得更加简单和廉价,研究人员选择 NGS 而不是微阵列进行更多的基因组应用。然而,微阵列在 NGS 方面仍然具有重要的优势。例如,与微阵列相比,RNA-Seq 需要更复杂的生物信息学分析,并且缺乏标准化的分析协议。因此,两种技术之间可能会产生协同作用。为了应对这一挑战,一种用于整合通过 NGS 技术获取的 MM 数据的有效工具是 MMRFBiolinks,这是一个新的 R 包,用于整合和分析来自多发性骨髓瘤研究基金会(MMRF)CoMMpass(多发性骨髓瘤的临床结果对遗传特征的个人评估)研究的数据,可在 MMRF 研究人员门户(MMRF-RG)和国家癌症研究所基因组数据共享(NCI-GDC)数据门户获得。我们没有从头开始开发一个全新的软件包,而是决定利用 TC-GABiolinks,一个 R/Bioconductor 软件包,因为它提供了一些有用的方法来访问和分析 MMRF-CoMMpass 数据。本文展示了基于 MMRFBiolinks 使用的综合分析工作流程。特别是,它可以进行比较分析存储在 GDC 数据门户中的 RNA-Seq 数据,以进行 Kaplan-Meier(KM)生存分析和差异基因表达(DGE)基因集的富集分析。此外,它还处理 MMRF-RG 数据,以分析规范变体与治疗结果以及治疗类别之间的相关性。为了展示工作流程的潜力,我们展示了两个案例研究。前者处理了 GDC 数据门户中可用的 MM 骨髓样本类型的数据。后者处理了 MMRF-RG 数据,用于分析从案例研究 1 中获得的基因集中的规范变体与治疗结果以及治疗类别之间的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验