Suppr超能文献

放射组学在外科肿瘤学中的应用与挑战。

Radiomics in surgical oncology: applications and challenges.

机构信息

Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Department of Surgery - Hepatopancreatobiliary Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Comput Assist Surg (Abingdon). 2021 Dec;26(1):85-96. doi: 10.1080/24699322.2021.1994014.

Abstract

Surgery is a curative treatment option for many patients with malignant tumors. Increased attention has focused on the combination of surgery with chemotherapy, as multimodality treatment has been associated with promising results in certain cancer types. Despite these data, there remains clinical equipoise on optimal timing and patient selection for neoadjuvant or adjuvant strategies. Radiomics, an emerging field involving the extraction of advanced features from radiographic images, has the potential to revolutionize oncologic treatment and contribute to the advance of personalized therapy by helping predict tumor behavior and response to therapy. This review analyzes and summarizes studies that use radiomics with machine learning in patients who have received neoadjuvant and/or adjuvant chemotherapy to predict prognosis, recurrence, survival, and therapeutic response for various cancer types. While studies in both neoadjuvant and adjuvant settings demonstrate above average performance on ability to predict progression-free and overall survival, there remain many challenges and limitations to widespread implementation of this technology. The lack of standardization of common practices to analyze radiomics, limited data sharing, and absence of auto-segmentation have hindered the inclusion and rapid adoption of radiomics in prospective, clinical studies.

摘要

手术是许多恶性肿瘤患者的一种治疗选择。越来越多的人关注手术与化疗相结合,因为在某些癌症类型中,多模式治疗已取得了有希望的结果。尽管有这些数据,但在新辅助或辅助策略的最佳时机和患者选择方面仍存在临床平衡。放射组学是一个新兴领域,涉及从放射图像中提取高级特征,它有可能通过帮助预测肿瘤的行为和对治疗的反应来彻底改变肿瘤治疗,并为个性化治疗的发展做出贡献。这篇综述分析和总结了使用放射组学和机器学习的研究,这些研究针对接受新辅助和/或辅助化疗的患者,以预测各种癌症类型的预后、复发、生存和治疗反应。虽然新辅助和辅助环境中的研究在预测无进展生存期和总生存期方面的表现均高于平均水平,但该技术的广泛应用仍存在许多挑战和局限性。分析放射组学的常见实践缺乏标准化、数据共享有限以及缺乏自动分割,这阻碍了放射组学在前瞻性临床研究中的纳入和快速采用。

相似文献

1
Radiomics in surgical oncology: applications and challenges.放射组学在外科肿瘤学中的应用与挑战。
Comput Assist Surg (Abingdon). 2021 Dec;26(1):85-96. doi: 10.1080/24699322.2021.1994014.
8
Radiomics in colorectal cancer patients.结直肠癌患者的放射组学
World J Gastroenterol. 2023 May 21;29(19):2888-2904. doi: 10.3748/wjg.v29.i19.2888.

本文引用的文献

4
The future of digital health with federated learning.联合学习助力数字健康的未来。
NPJ Digit Med. 2020 Sep 14;3:119. doi: 10.1038/s41746-020-00323-1. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验