School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States.
J Phys Chem B. 2021 Dec 23;125(50):13599-13609. doi: 10.1021/acs.jpcb.1c04873. Epub 2021 Dec 14.
Peptide coassembly, wherein at least two different peptides interact to form multicomponent nanostructures, is an attractive approach for generating functional biomaterials. Current efforts seek to design pairs of peptides, A and B, that form nanostructures (e.g., β-sheets with ABABA-type β-strand patterning) while resisting self-assembly (e.g., AAAAA-type or BBBBB-type β-sheets). To confer coassembly behavior, most existing designs have been based on highly charged variants of known self-assembling peptides; like-charge repulsion limits self-assembly while opposite-charge attraction promotes coassembly. Recent analyses using solid-state NMR and coarse-grained simulations reveal that preconceived notions of structure and molecular organization are not always correct. This perspective highlights recent advances and key challenges to understanding and controlling peptide coassembly.
肽共组装,其中至少两种不同的肽相互作用形成多组分纳米结构,是一种有吸引力的方法,用于产生功能性生物材料。目前的努力旨在设计一对肽,A 和 B,形成纳米结构(例如,具有 ABABA 型 β-链图案的 β-片层),同时抵抗自组装(例如,AAAAA 型或 BBBBB 型 β-片层)。为了赋予共组装行为,大多数现有设计都基于已知自组装肽的高电荷变体; 同种电荷排斥限制自组装,而相反电荷吸引促进共组装。使用固态 NMR 和粗粒度模拟的最新分析表明,对结构和分子组织的先入为主的观念并不总是正确的。本观点强调了理解和控制肽共组装的最新进展和关键挑战。