Liu Yuzhu, Islam Md Shariful, Bakker Anna, Li Zihao, Ajam Alaa, Kruzic Jamie J, Kilian Kristopher A
School of Materials Science and Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
J Mater Chem B. 2025 Jan 22;13(4):1286-1295. doi: 10.1039/d4tb02002b.
Most synthetic hydrogels are formed through radical polymerization to yield a homogenous covalent meshwork. In contrast, natural hydrogels form through mechanisms involving both covalent assembly and supramolecular interactions. In this communication, we expand the capabilities of covalent poly(ethylene glycol) (PEG) networks through co-assembly of supramolecular peptide nanofibers. Using a peptide hydrogelator derived from the tryptophan zipper (Trpzip) motif, we demonstrate how formation of nanofiber networks can tune the stiffness of PEG-based hydrogels, while also imparting shear thinning, stress relaxation, and self-healing properties. The hybrid networks show enhanced toughness and durability under tension, providing scope for use in load bearing applications. A small quantity of Trpzip peptide renders the non-adhesive PEG network adhesive, supporting adipose derived stromal cell adhesion, elongation, and growth. The integration of supramolecular networks into covalent meshworks expands the versatility of these materials, opening up new avenues for applications in biotechnology and medicine.
大多数合成水凝胶是通过自由基聚合形成的,以产生均匀的共价网络。相比之下,天然水凝胶是通过涉及共价组装和超分子相互作用的机制形成的。在本通讯中,我们通过超分子肽纳米纤维的共组装扩展了共价聚乙二醇(PEG)网络的功能。使用源自色氨酸拉链(Trpzip)基序的肽水凝胶剂,我们展示了纳米纤维网络的形成如何调节基于PEG的水凝胶的硬度,同时还赋予剪切变稀、应力松弛和自愈性能。混合网络在拉伸下显示出增强的韧性和耐久性,为承重应用提供了应用范围。少量的Trpzip肽使非粘性PEG网络具有粘性,支持脂肪来源的基质细胞粘附、伸长和生长。将超分子网络整合到共价网络中扩展了这些材料的多功能性,为生物技术和医学应用开辟了新途径。