Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695.
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4710-4717. doi: 10.1073/pnas.1912810117. Epub 2020 Feb 18.
Peptide self-assembly, wherein molecule A associates with other A molecules to form fibrillar β-sheet structures, is common in nature and widely used to fabricate synthetic biomaterials. Selective coassembly of peptide pairs A and B with complementary partial charges is gaining interest due to its potential for expanding the form and function of biomaterials that can be realized. It has been hypothesized that charge-complementary peptides organize into alternating ABAB-type arrangements within assembled β-sheets, but no direct molecular-level evidence exists to support this interpretation. We report a computational and experimental approach to characterize molecular-level organization of the established peptide pair, CATCH. Discontinuous molecular dynamics simulations predict that CATCH(+) and CATCH(-) peptides coassemble but do not self-assemble. Two-layer β-sheet amyloid structures predominate, but off-pathway β-barrel oligomers are also predicted. At low concentration, transmission electron microscopy and dynamic light scattering identified nonfibrillar ∼20-nm oligomers, while at high concentrations elongated fibers predominated. Thioflavin T fluorimetry estimates rapid and near-stoichiometric coassembly of CATCH(+) and CATCH(-) at concentrations ≥100 μM. Natural abundance C NMR and isotope-edited Fourier transform infrared spectroscopy indicate that CATCH(+) and CATCH(-) coassemble into two-component nanofibers instead of self-sorting. However, C-C dipolar recoupling solid-state NMR measurements also identify nonnegligible AA and BB interactions among a majority of AB pairs. Collectively, these results demonstrate that strictly alternating arrangements of β-strands predominate in coassembled CATCH structures, but deviations from perfect alternation occur. Off-pathway β-barrel oligomers are also suggested to occur in coassembled β-strand peptide systems.
肽的自组装,即分子 A 与其他 A 分子缔合形成纤维状β-折叠结构,在自然界中很常见,并且被广泛用于制造合成生物材料。由于其具有扩展可实现的生物材料的形式和功能的潜力,对具有互补部分电荷的肽对 A 和 B 的选择性共组装越来越感兴趣。有人假设电荷互补的肽在组装的β-折叠内组织成交替的 ABAB 型排列,但没有直接的分子水平证据支持这种解释。我们报告了一种用于表征已建立的肽对 CATCH 的分子水平组织的计算和实验方法。不连续分子动力学模拟预测 CATCH(+)和 CATCH(-)肽共组装但不自组装。两层β-折叠淀粉样结构占主导地位,但也预测了非途径β-桶寡聚物。在低浓度下,透射电子显微镜和动态光散射鉴定出非纤维状约 20nm 寡聚物,而在高浓度下,伸长纤维占主导地位。硫黄素 T 荧光法估计 CATCH(+)和 CATCH(-)在浓度≥100μM 时快速且近乎化学计量的共组装。天然丰度 C NMR 和同位素编辑傅里叶变换红外光谱表明,CATCH(+)和 CATCH(-)共组装成二组分纳米纤维,而不是自分类。然而,C-C 偶极子重聚固态 NMR 测量也表明在大多数 AB 对中存在不可忽略的 AA 和 BB 相互作用。总之,这些结果表明,在共组装的 CATCH 结构中β-链的严格交替排列占主导地位,但存在偏离完美交替的情况。还建议在共组装的β-链肽系统中存在非途径β-桶寡聚物。