Suppr超能文献

选择性共聚β-折叠肽纳米纤维的结构分析。

Anatomy of a selectively coassembled β-sheet peptide nanofiber.

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695.

School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332.

出版信息

Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4710-4717. doi: 10.1073/pnas.1912810117. Epub 2020 Feb 18.

Abstract

Peptide self-assembly, wherein molecule A associates with other A molecules to form fibrillar β-sheet structures, is common in nature and widely used to fabricate synthetic biomaterials. Selective coassembly of peptide pairs A and B with complementary partial charges is gaining interest due to its potential for expanding the form and function of biomaterials that can be realized. It has been hypothesized that charge-complementary peptides organize into alternating ABAB-type arrangements within assembled β-sheets, but no direct molecular-level evidence exists to support this interpretation. We report a computational and experimental approach to characterize molecular-level organization of the established peptide pair, CATCH. Discontinuous molecular dynamics simulations predict that CATCH(+) and CATCH(-) peptides coassemble but do not self-assemble. Two-layer β-sheet amyloid structures predominate, but off-pathway β-barrel oligomers are also predicted. At low concentration, transmission electron microscopy and dynamic light scattering identified nonfibrillar ∼20-nm oligomers, while at high concentrations elongated fibers predominated. Thioflavin T fluorimetry estimates rapid and near-stoichiometric coassembly of CATCH(+) and CATCH(-) at concentrations ≥100 μM. Natural abundance C NMR and isotope-edited Fourier transform infrared spectroscopy indicate that CATCH(+) and CATCH(-) coassemble into two-component nanofibers instead of self-sorting. However, C-C dipolar recoupling solid-state NMR measurements also identify nonnegligible AA and BB interactions among a majority of AB pairs. Collectively, these results demonstrate that strictly alternating arrangements of β-strands predominate in coassembled CATCH structures, but deviations from perfect alternation occur. Off-pathway β-barrel oligomers are also suggested to occur in coassembled β-strand peptide systems.

摘要

肽的自组装,即分子 A 与其他 A 分子缔合形成纤维状β-折叠结构,在自然界中很常见,并且被广泛用于制造合成生物材料。由于其具有扩展可实现的生物材料的形式和功能的潜力,对具有互补部分电荷的肽对 A 和 B 的选择性共组装越来越感兴趣。有人假设电荷互补的肽在组装的β-折叠内组织成交替的 ABAB 型排列,但没有直接的分子水平证据支持这种解释。我们报告了一种用于表征已建立的肽对 CATCH 的分子水平组织的计算和实验方法。不连续分子动力学模拟预测 CATCH(+)和 CATCH(-)肽共组装但不自组装。两层β-折叠淀粉样结构占主导地位,但也预测了非途径β-桶寡聚物。在低浓度下,透射电子显微镜和动态光散射鉴定出非纤维状约 20nm 寡聚物,而在高浓度下,伸长纤维占主导地位。硫黄素 T 荧光法估计 CATCH(+)和 CATCH(-)在浓度≥100μM 时快速且近乎化学计量的共组装。天然丰度 C NMR 和同位素编辑傅里叶变换红外光谱表明,CATCH(+)和 CATCH(-)共组装成二组分纳米纤维,而不是自分类。然而,C-C 偶极子重聚固态 NMR 测量也表明在大多数 AB 对中存在不可忽略的 AA 和 BB 相互作用。总之,这些结果表明,在共组装的 CATCH 结构中β-链的严格交替排列占主导地位,但存在偏离完美交替的情况。还建议在共组装的β-链肽系统中存在非途径β-桶寡聚物。

相似文献

1
Anatomy of a selectively coassembled β-sheet peptide nanofiber.选择性共聚β-折叠肽纳米纤维的结构分析。
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4710-4717. doi: 10.1073/pnas.1912810117. Epub 2020 Feb 18.

引用本文的文献

7
Computational Design of Peptides for Biomaterials Applications.用于生物材料应用的肽的计算设计。
ACS Appl Bio Mater. 2024 Feb 19;7(2):617-625. doi: 10.1021/acsabm.2c01023. Epub 2023 Mar 27.
9
Advanced nanomaterial for prostate cancer theranostics.用于前列腺癌诊疗的先进纳米材料。
Front Bioeng Biotechnol. 2022 Nov 1;10:1046234. doi: 10.3389/fbioe.2022.1046234. eCollection 2022.

本文引用的文献

3
Thermodynamic phase diagram of amyloid-β (16-22) peptide.淀粉样β(16-22)肽的热力学相图。
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):2091-2096. doi: 10.1073/pnas.1819592116. Epub 2019 Jan 23.
5
Hetero-assembly of a dual β-amyloid variant peptide system.双淀粉样变变体肽体系的杂化组装。
Chem Commun (Camb). 2018 Jun 14;54(49):6380-6383. doi: 10.1039/c8cc02724b.
6
Multicomponent peptide assemblies.多组分肽组装体。
Chem Soc Rev. 2018 May 21;47(10):3659-3720. doi: 10.1039/c8cs00115d.
9
Design of Asymmetric Peptide Bilayer Membranes.不对称肽双层膜的设计。
J Am Chem Soc. 2016 Mar 16;138(10):3579-86. doi: 10.1021/jacs.6b00977. Epub 2016 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验