阅读框修复截断变异体可恢复肌联蛋白的数量和功能。

Reading Frame Repair of Truncation Variants Restores Titin Quantity and Functions.

机构信息

University of Connecticut Health Center, Farmington (R.R., F.A.L., A.M.P., J.T.H.).

The Jackson Laboratory for Genomic Medicine, Farmington, CT (S.G., T.Z., N.L., K.T., J.T.H.).

出版信息

Circulation. 2022 Jan 18;145(3):194-205. doi: 10.1161/CIRCULATIONAHA.120.049997. Epub 2021 Dec 14.

Abstract

BACKGROUND

Titin truncation variants (TTNtvs) are the most common inheritable risk factor for dilated cardiomyopathy (DCM), a disease with high morbidity and mortality. The pathogenicity of TTNtvs has been associated with structural localization as A-band variants overlapping myosin heavy chain-binding domains are more pathogenic than I-band variants by incompletely understood mechanisms. Demonstrating why A-band variants are highly pathogenic for DCM could reveal new insights into DCM pathogenesis, titin (TTN) functions, and therapeutic targets.

METHODS

We constructed human cardiomyocyte models harboring DCM-associated TTNtvs within A-band and I-band structural domains using induced pluripotent stem cell and CRISPR technologies. We characterized normal TTN isoforms and variant-specific truncation peptides by their expression levels and cardiomyocyte localization using TTN protein gel electrophoresis and immunofluorescence, respectively. Using CRISPR to ablate A-band variant-specific truncation peptides through introduction of a proximal I-band TTNtv, we studied genetic mechanisms in single cardiomyocyte and 3-dimensional, biomimetic cardiac microtissue functional assays. Last, we engineered a full-length TTN protein reporter assay and used next-generation sequencing assays to develop a CRISPR therapeutic for somatic cell genome editing TTNtvs.

RESULTS

An A-band TTNtv dose-dependently impaired cardiac microtissue twitch force, reduced full-length TTN levels, and produced abundant TTN truncation peptides. TTN truncation peptides integrated into nascent myofibril-like structures and impaired myofibrillogenesis. CRISPR ablation of TTN truncation peptides using a proximal I-band TTNtv partially restored cardiac microtissue twitch force deficits. Cardiomyocyte genome editing using SpCas9 and a TTNtv-specific guide RNA restored the TTN protein reading frame, which increased full-length TTN protein levels, reduced TTN truncation peptides, and increased sarcomere function in cardiac microtissue assays.

CONCLUSIONS

An A-band TTNtv diminished sarcomere function greater than an I-band TTNtv in proportion to estimated DCM pathogenicity. Although both TTNtvs resulted in full-length TTN haploinsufficiency, only the A-band TTNtv produced TTN truncation peptides that impaired myofibrillogenesis and sarcomere function. CRISPR-mediated reading frame repair of the A-band TTNtv restored functional deficits, and could be adapted as a one-and-done genome editing strategy to target ≈30% of DCM-associated TTNtvs.

摘要

背景

肌联蛋白截断变异(TTNtvs)是扩张型心肌病(DCM)最常见的可遗传风险因素,该病发病率和死亡率都很高。TTNtvs 的致病性与结构定位有关,与不完全了解的机制相关,重叠肌球蛋白重链结合域的 A 带变异比 I 带变异更具致病性。证明 A 带变异为何对 DCM 具有高度致病性,可以揭示 DCM 发病机制、肌联蛋白(TTN)功能和治疗靶点的新见解。

方法

我们使用诱导多能干细胞和 CRISPR 技术在 A 带和 I 带结构域构建了携带 DCM 相关 TTNtvs 的人类心肌细胞模型。我们通过 TTN 蛋白凝胶电泳和免疫荧光分别用其表达水平和心肌细胞定位来描述正常 TTN 异构体和变异特异性截断肽。通过引入近端 I 带 TTNtv 来 CRISPR 敲除 A 带变异特异性截断肽,我们在单个心肌细胞和 3 维、仿生心脏微组织功能测定中研究了遗传机制。最后,我们设计了全长 TTN 蛋白报告测定,并使用下一代测序测定开发了用于体细胞基因组编辑 TTNtvs 的 CRISPR 治疗方法。

结果

A 带 TTNtv 剂量依赖性地损害心脏微组织抽搐力,降低全长 TTN 水平,并产生大量 TTN 截断肽。TTN 截断肽整合到新生肌原纤维样结构中并损害肌原纤维发生。使用近端 I 带 TTNtv 对 TTN 截断肽进行 CRISPR 敲除可部分恢复心脏微组织抽搐力缺陷。使用 SpCas9 和 TTNtv 特异性向导 RNA 对心肌细胞进行基因组编辑可恢复 TTN 蛋白阅读框,从而增加全长 TTN 蛋白水平、减少 TTN 截断肽,并增加心脏微组织测定中的肌节功能。

结论

A 带 TTNtv 对肌节功能的损害大于 I 带 TTNtv,与估计的 DCM 致病性成比例。尽管两种 TTNtvs 都导致全长 TTN 杂合不足,但只有 A 带 TTNtv 产生 TTN 截断肽,从而损害肌原纤维发生和肌节功能。CRISPR 介导的 A 带 TTNtv 阅读框修复可恢复功能缺陷,并且可作为一种一次性的基因组编辑策略来靶向 ≈30%的 DCM 相关 TTNtvs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索