Suppr超能文献

一种用于预测蛋白质内在无序区域相互作用的深度学习方法。

A deep learning method for predicting interactions for intrinsically disordered regions of proteins.

作者信息

Majila Kartik, Ullanat Varun, Viswanath Shruthi

机构信息

National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India 560065.

出版信息

bioRxiv. 2025 Jan 22:2024.12.19.629373. doi: 10.1101/2024.12.19.629373.

Abstract

Intrinsically disordered proteins or regions (IDPs/IDRs) adopt diverse binding modes with different partners, ranging from ordered to multivalent to fuzzy conformations in the bound state. Characterizing IDR interfaces is challenging experimentally and computationally. Alphafold-multimer and Alphafold3, the state-of-the-art structure prediction methods, are less accurate at predicting IDR binding sites at their benchmarked confidence cutoffs. Their performance improves upon lowering the confidence cutoffs. Here, we developed Disobind, a deep-learning method that predicts inter-protein contact maps and interface residues for an IDR and a partner protein, given their sequences. It outperforms AlphaFold-multimer and AlphaFold3 at multiple confidence cutoffs. Combining the Disobind and AlphaFold-multimer predictions further improves the performance. In contrast to most current methods, Disobind considers the context of the binding partner and does not depend on structures and multiple sequence alignments. Its predictions can be used to localize IDRs in integrative structures of large assemblies and characterize and modulate IDR-mediated interactions.

摘要

内在无序蛋白或区域(IDPs/IDRs)与不同的结合伙伴采用多种结合模式,从有序到多价再到结合状态下的模糊构象。通过实验和计算来表征IDR界面具有挑战性。最先进的结构预测方法AlphaFold-multimer和AlphaFold3在其基准置信度截止值下预测IDR结合位点的准确性较低。降低置信度截止值时,它们的性能会有所提高。在这里,我们开发了Disobind,这是一种深度学习方法,给定IDR和伙伴蛋白的序列,可预测它们之间的蛋白间接触图和界面残基。在多个置信度截止值下,它的表现优于AlphaFold-multimer和AlphaFold3。结合Disobind和AlphaFold-multimer的预测可进一步提高性能。与目前大多数方法不同,Disobind考虑了结合伙伴的背景,且不依赖于结构和多序列比对。其预测结果可用于在大型组件的整合结构中定位IDR,并表征和调节IDR介导的相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1003/11771233/980cbe70c6b1/nihpp-2024.12.19.629373v5-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验