From the Department of Medicine and Neurology (F.C.N., L.C., N.Y., G.S., B.Y., M.P., G.D., S.D., B.C.), Melbourne Brain Centre at the Royal Melbourne Hospital, Florey Institute of Neuroscience and Mental Health (L.C., V.T., H.D.), and Department of Radiology (P.D., B.Y., P.M.), Royal Melbourne Hospital, University of Melbourne, Parkville; Department of Neurology (F.C.N., V.T.), Austin Hospital, Austin Health; Department of Medicine (Austin Health) (L.C.), University of Melbourne, Heidelberg, Victoria; Population Health and Immunity Division (N.Y.), Walter and Eliza Hall Institute of Medical Research, Parkville; Department of Neurology (T.J.K.), Royal Adelaide Hospital, South Australia, Australia; Department of Neurology (T.W.), Christchurch Hospital, New Zealand; Department of Neurology (D.S.), Princess Alexandra Hospital, Brisbane, Queensland; and Department of Neurosciences (H.D.), Eastern Health and Eastern Health Clinical School, Monash University, Clayton, Victoria, Australia.
Neurology. 2022 Feb 22;98(8):e790-e801. doi: 10.1212/WNL.0000000000013210. Epub 2021 Dec 14.
The relevance of impaired microvascular tissue-level reperfusion despite complete upstream macrovascular angiographic reperfusion (no-reflow) in human stroke remains controversial. We investigated the prevalence and clinical-radiologic features of this phenomenon and its associations with outcomes in 3 international randomized controlled thrombectomy trials with prespecified follow-up perfusion imaging.
In a pooled analysis of the Extending the Time for Thrombolysis in Emergency Neurological Deficits-Intra-Arterial (EXTEND-IA; ClinicalTrials.gov NCT01492725), Tenecteplase Versus Alteplase Before Endovascular Therapy for Ischemic Stroke (EXTEND-IA TNK; NCT02388061), and Determining the Optimal Dose of Tenecteplase Before Endovascular Therapy for Ischaemic Stroke (EXTEND-IA TNK Part 2; NCT03340493) trials, patients undergoing thrombectomy with final angiographic expanded Treatment in Cerebral Infarction score of 2c to 3 score for anterior circulation large vessel occlusion and 24-hour follow-up CT or MRI perfusion imaging were included. No-reflow was defined as regions of visually demonstrable persistent hypoperfusion on relative cerebral blood volume or flow maps within the infarct and verified quantitatively by >15% asymmetry compared to a mirror homolog in the absence of carotid stenosis or reocclusion.
Regions of no-reflow were identified in 33 of 130 patients (25.3%), encompassed a median of 60.2% (interquartile range 47.8%-70.7%) of the infarct volume, and involved both subcortical (n = 26 of 33, 78.8%) and cortical (n = 10 of 33, 30.3%) regions. Patients with no-reflow had a median 25.2% (interquartile range 16.4%-32.2%, < 0.00001) relative cerebral blood volume interside reduction and 19.1% (interquartile range 3.9%-28.3%, = 0.00011) relative cerebral blood flow reduction but similar mean transit time (median -3.3%, interquartile range -11.9% to 24.4%, = 0.24) within the infarcted region. Baseline characteristics were similar between patients with and those without no-reflow. The presence of no-reflow was associated with hemorrhagic transformation (adjusted odds ratio [aOR] 1.79, 95% confidence interval [CI] 2.32-15.57, = 0.0002), greater infarct growth (β = 11.00, 95% CI 5.22-16.78, = 0.00027), reduced NIH Stroke Scale score improvement at 24 hours (β = -4.06, 95% CI 6.78-1.34, = 0.004) and being dependent or dead at 90 days as assessed by the modified Rankin Scale (aOR 3.72, 95% CI 1.35-10.20, = 0.011) in multivariable analysis.
Cerebral no-reflow in humans is common, can be detected by its characteristic perfusion imaging profile using readily available sequences in the clinical setting, and is associated with posttreatment complications and being dependent or dead. Further studies evaluating the role of no-reflow in secondary injury after angiographic reperfusion are warranted.
This study provides Class II evidence that cerebral no-reflow on CT/MRI perfusion imaging at 24 hours is associated with posttreatment complications and poor 3-month functional outcome.
尽管大血管血管造影再通(无再流)完全,但人类中风中微血管组织水平再灌注受损的相关性仍存在争议。我们研究了这种现象的发生率和临床影像学特征,以及它与 3 项国际随机对照取栓试验的结果之间的关联,这些试验都有预先指定的随访灌注成像。
在 EXTEND-IA(ClinicalTrials.gov NCT01492725)、Tenecteplase 与 Alteplase 用于治疗缺血性中风的血管内治疗(EXTEND-IA TNK;NCT02388061)和确定 Tenecteplase 用于治疗缺血性中风的最佳剂量(EXTEND-IA TNK 第 2 部分;NCT03340493)试验的汇总分析中,纳入了接受最后血管造影扩展治疗后的患者颅内梗死体积评分 2c 至 3 分的前循环大血管闭塞和 24 小时随访 CT 或 MRI 灌注成像。无再流定义为在相对脑血容量或血流图上可见的梗死区内持续灌注不足的区域,并且在没有颈动脉狭窄或再闭塞的情况下通过与镜像同源物相比>15%的不对称性来定量验证。
在 130 例患者中的 33 例(25.3%)中发现了无再流区域,中位数占梗死体积的 60.2%(四分位距 47.8%-70.7%),涉及皮质(n = 33,78.8%)和皮质下(n = 33,30.3%)区域。无再流患者的相对脑血容量侧间减少中位数为 25.2%(四分位距 16.4%-32.2%,<0.00001),相对脑血流减少中位数为 19.1%(四分位距 3.9%-28.3%,=0.00011),但在梗死区内的平均通过时间相似(中位数 -3.3%,四分位距 -11.9%至 24.4%,=0.24)。无再流患者和无再流患者的基线特征相似。无再流的存在与出血性转化(校正优势比[aOR]1.79,95%置信区间[CI]2.32-15.57,=0.0002)、更大的梗死体积增长(β=11.00,95%CI 5.22-16.78,=0.00027)、24 小时 NIH 卒中量表评分改善减少(β=-4.06,95%CI 6.78-1.34,=0.004)和改良 Rankin 量表(mRS)评估的 90 天依赖或死亡(aOR 3.72,95%CI 1.35-10.20,=0.011)相关,多变量分析。
人类大脑无再流很常见,可以通过在临床环境中使用现成的序列来检测其特征性灌注成像特征,并且与治疗后并发症和依赖或死亡有关。需要进一步研究评估血管造影再通后无再流在继发性损伤中的作用。
本研究提供了 II 级证据,表明 CT/MRI 灌注成像 24 小时的大脑无再流与治疗后并发症和 3 个月的功能预后不良有关。