IFN-CNR, Piazza Leonardo da Vinci 32, Milano, Italy.
Dipartimento di Chimica Industriale, Università degli Studi di Bologna, Viale del Risorgimento 4, Bologna, Italy.
Nat Commun. 2021 Dec 14;12(1):7285. doi: 10.1038/s41467-021-27535-7.
DNA owes its remarkable photostability to its building blocks-the nucleosides-that efficiently dissipate the energy acquired upon ultraviolet light absorption. The mechanism occurring on a sub-picosecond time scale has been a matter of intense debate. Here we combine sub-30-fs transient absorption spectroscopy experiments with broad spectral coverage and state-of-the-art mixed quantum-classical dynamics with spectral signal simulations to resolve the early steps of the deactivation mechanisms of uridine (Urd) and 5-methyluridine (5mUrd) in aqueous solution. We track the wave packet motion from the Franck-Condon region to the conical intersections (CIs) with the ground state and observe spectral signatures of excited-state vibrational modes. 5mUrd exhibits an order of magnitude longer lifetime with respect to Urd due to the solvent reorganization needed to facilitate bulky methyl group motions leading to the CI. This activates potentially lesion-inducing dynamics such as ring opening. Involvement of the nπ* state is found to be negligible.
DNA 的非凡光稳定性归功于其构建模块——核苷,它们能够有效地耗散紫外线吸收后获得的能量。在皮秒时间尺度上发生的机制一直是激烈争论的问题。在这里,我们将亚 30 飞秒瞬态吸收光谱实验与广泛的光谱覆盖范围以及具有光谱信号模拟的最先进的混合量子经典动力学相结合,以解决尿嘧啶(Urd)和 5-甲基尿嘧啶(5mUrd)在水溶液中的失活机制的早期步骤。我们从 Franck-Condon 区域跟踪波包运动到与基态的交叉点(CI),并观察到激发态振动模式的光谱特征。由于需要溶剂重组来促进较大的甲基运动以达到 CI,5mUrd 的寿命比 Urd 长一个数量级。这激活了潜在的诱导损伤动力学,如环的打开。发现 nπ* 态的参与可以忽略不计。