Suppr超能文献

人工智能在计算机断层扫描中的骨折识别:文献综述与建议。

Artificial intelligence fracture recognition on computed tomography: review of literature and recommendations.

机构信息

Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.

Department of Orthopedic Surgery, Groningen University Medical Centre, Groningen, The Netherlands.

出版信息

Eur J Trauma Emerg Surg. 2023 Apr;49(2):681-691. doi: 10.1007/s00068-022-02128-1. Epub 2022 Oct 26.

Abstract

PURPOSE

The use of computed tomography (CT) in fractures is time consuming, challenging and suffers from poor inter-surgeon reliability. Convolutional neural networks (CNNs), a subset of artificial intelligence (AI), may overcome shortcomings and reduce clinical burdens to detect and classify fractures. The aim of this review was to summarize literature on CNNs for the detection and classification of fractures on CT scans, focusing on its accuracy and to evaluate the beneficial role in daily practice.

METHODS

Literature search was performed according to the PRISMA statement, and Embase, Medline ALL, Web of Science Core Collection, Cochrane Central Register of Controlled Trials and Google Scholar databases were searched. Studies were eligible when the use of AI for the detection of fractures on CT scans was described. Quality assessment was done with a modified version of the methodologic index for nonrandomized studies (MINORS), with a seven-item checklist. Performance of AI was defined as accuracy, F1-score and area under the curve (AUC).

RESULTS

Of the 1140 identified studies, 17 were included. Accuracy ranged from 69 to 99%, the F1-score ranged from 0.35 to 0.94 and the AUC, ranging from 0.77 to 0.95. Based on ten studies, CNN showed a similar or improved diagnostic accuracy in addition to clinical evaluation only.

CONCLUSIONS

CNNs are applicable for the detection and classification fractures on CT scans. This can improve automated and clinician-aided diagnostics. Further research should focus on the additional value of CNN used for CT scans in daily clinics.

摘要

目的

计算机断层扫描(CT)在骨折中的应用既耗时又具有挑战性,且不同医生之间的可靠性也较差。卷积神经网络(CNN)作为人工智能(AI)的一个分支,可能会克服这些缺点,并减少检测和分类骨折的临床负担。本综述的目的是总结关于 CT 扫描中骨折检测和分类的 CNN 文献,重点关注其准确性,并评估其在日常实践中的有益作用。

方法

根据 PRISMA 声明进行文献检索,并检索了 Embase、Medline ALL、Web of Science 核心合集、Cochrane 对照试验中心注册库和 Google Scholar 数据库。当描述了 AI 用于 CT 扫描中骨折检测时,研究即符合纳入标准。使用改良版非随机研究方法学指数(MINORS)进行质量评估,采用七项清单。AI 的性能定义为准确性、F1 评分和曲线下面积(AUC)。

结果

在 1140 项已识别的研究中,有 17 项被纳入。准确性范围为 69%至 99%,F1 评分范围为 0.35 至 0.94,AUC 范围为 0.77 至 0.95。基于 10 项研究,CNN 除了临床评估外,还显示出相似或更高的诊断准确性。

结论

CNN 可应用于 CT 扫描中骨折的检测和分类。这可以改善自动和临床辅助诊断。进一步的研究应侧重于 CNN 在日常临床中用于 CT 扫描的附加价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c34a/10175338/1c960d54f873/68_2022_2128_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验