Suppr超能文献

该技术“联合和个体方差解释”使用纵向食物频率数据突出了饮食的持久方面。

The technique 'joint and individual variance explained' highlights persistent aspects of the diet using longitudinal food frequency data.

机构信息

Department of Statistics, Faculty of Science, University of Auckland, Auckland1142, New Zealand.

Department of Human Genetics, McGill University, Montreal, Canada.

出版信息

Br J Nutr. 2022 Nov 28;128(10):2054-2062. doi: 10.1017/S0007114521004955. Epub 2021 Dec 17.

Abstract

Dietary pattern analysis is typically based on dimension reduction and summarises the diet with a small number of scores. We assess 'joint and individual variance explained' (JIVE) as a method for extracting dietary patterns from longitudinal data that highlights elements of the diet that are associated over time. The Auckland Birthweight Collaborative Study, in which participants completed an FFQ at ages 3·5 ( 549), 7 ( 591) and 11 ( 617), is used as an example. Data from each time point are projected onto the directions of shared variability produced by JIVE to yield dietary patterns and scores. We assess the ability of the scores to predict future BMI and blood pressure measurements of the participants and make a comparison with principal component analysis (PCA) performed separately at each time point. The diet could be summarised with three JIVE patterns. The patterns were interpretable, with the same interpretation across age groups: a vegetable and whole grain pattern, a sweets and meats pattern and a cereal . sweet drinks pattern. The first two PCA-derived patterns were similar across age groups and similar to the first two JIVE patterns. The interpretation of the third PCA pattern changed across age groups. Scores produced by the two techniques were similarly effective in predicting future BMI and blood pressure. We conclude that when data from the same participants at multiple ages are available, JIVE provides an advantage over PCA by extracting patterns with a common interpretation across age groups.

摘要

饮食模式分析通常基于降维和用少数几个分数来总结饮食。我们评估“联合和个体方差解释”(JIVE)作为一种从纵向数据中提取饮食模式的方法,该方法突出了随时间变化相关的饮食元素。奥克兰出生体重协作研究(Auckland Birthweight Collaborative Study)被用作一个例子,该研究中参与者在 3.5 岁(549 人)、7 岁(591 人)和 11 岁(617 人)时完成了一份 FFQ。来自每个时间点的数据都被投影到 JIVE 产生的共享方差方向上,以产生饮食模式和分数。我们评估了这些分数预测参与者未来 BMI 和血压测量值的能力,并与分别在每个时间点进行的主成分分析(PCA)进行了比较。饮食可以用三个 JIVE 模式来概括。这些模式是可解释的,在不同年龄组之间具有相同的解释:蔬菜和全谷物模式、甜食和肉类模式以及谷物和甜食饮料模式。前两个 PCA 衍生模式在不同年龄组之间相似,与前两个 JIVE 模式相似。第三个 PCA 模式的解释在不同年龄组之间发生了变化。两种技术产生的分数在预测未来 BMI 和血压方面同样有效。我们得出的结论是,当同一批参与者在多个年龄段的数据可用时,JIVE 通过提取在不同年龄组中具有共同解释的模式,比 PCA 具有优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验