Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri, USA.
Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri, USA.
J Biol Chem. 2022 Jan;298(1):101495. doi: 10.1016/j.jbc.2021.101495. Epub 2021 Dec 14.
Metabolic reprogramming has been shown to occur in uveal melanoma (UM), the most common intraocular tumor in adults. Mechanisms driving metabolic reprogramming in UM are poorly understood. Elucidation of these mechanisms could inform development of new therapeutic strategies for metastatic UM, which has poor prognosis because existing therapies are ineffective. Here, we determined whether metabolic reprogramming is driven by constitutively active mutant α-subunits of the heterotrimeric G proteins Gq or G11 (Gq/11), the oncogenic drivers in ∼90% of UM patients. Using PET-computed tomography imaging, microphysiometry, and GC/MS, we found that inhibition of oncogenic Gq/11 with the small molecule FR900359 (FR) attenuated glucose uptake by UM cells in vivo and in vitro, blunted glycolysis and mitochondrial respiration in UM cell lines and tumor cells isolated from patients, and reduced levels of several glycolytic and tricarboxylic acid cycle intermediates. FR acutely inhibited glycolysis and respiration and chronically attenuated expression of genes in both metabolic processes. UM therefore differs from other melanomas that exhibit a classic Warburg effect. Metabolic reprogramming in UM cell lines and patient samples involved protein kinase C and extracellular signal-regulated protein kinase 1/2 signaling downstream of oncogenic Gq/11. Chronic administration of FR upregulated expression of genes involved in metabolite scavenging and redox homeostasis, potentially as an adaptive mechanism explaining why FR does not efficiently kill UM tumor cells or regress UM tumor xenografts. These results establish that oncogenic Gq/11 signaling is a crucial driver of metabolic reprogramming in UM and lay a foundation for studies aimed at targeting metabolic reprogramming for therapeutic development.
代谢重编程已被证明发生在葡萄膜黑色素瘤(UM)中,这是成年人中最常见的眼内肿瘤。导致 UM 代谢重编程的机制尚不清楚。阐明这些机制可以为转移性 UM 的新治疗策略提供信息,转移性 UM 的预后较差,因为现有的治疗方法无效。在这里,我们确定代谢重编程是否由异三聚体 G 蛋白 Gq 或 G11(Gq/11)的组成性激活突变α亚基驱动,Gq/11 是大约 90%UM 患者的致癌驱动因素。通过 PET-计算机断层扫描成像、微生理测定法和 GC/MS,我们发现用小分子 FR900359(FR)抑制致癌 Gq/11,可减弱 UM 细胞在体内和体外的葡萄糖摄取,削弱 UM 细胞系和从患者中分离出的肿瘤细胞中的糖酵解和线粒体呼吸,并降低几种糖酵解和三羧酸循环中间产物的水平。FR 可急性抑制糖酵解和呼吸作用,并慢性减弱两种代谢过程中的基因表达。因此,UM 与表现出经典沃伯格效应的其他黑色素瘤不同。UM 细胞系和患者样本中的代谢重编程涉及蛋白激酶 C 和致癌 Gq/11 下游的细胞外信号调节蛋白激酶 1/2 信号转导。FR 的慢性给药上调了参与代谢物清除和氧化还原平衡的基因表达,这可能是一种适应性机制,解释了为什么 FR 不能有效地杀死 UM 肿瘤细胞或使 UM 肿瘤异种移植物消退。这些结果确立了致癌 Gq/11 信号是 UM 代谢重编程的关键驱动因素,并为旨在针对代谢重编程进行治疗开发的研究奠定了基础。
Mol Cancer Res. 2018-12-19
Sci Signal. 2019-3-19
Cancer Cell. 2014-5-29
Mol Cancer Res. 2025-4-1
ACS Pharmacol Transl Sci. 2023-11-10
Diagnostics (Basel). 2023-5-29
Nat Commun. 2021-7-27
Trends Cancer. 2021-8
Cancer Manag Res. 2020-12-23
JAMA Ophthalmol. 2021-2-1
Clin Cancer Res. 2021-3-1