Suppr超能文献

使用调频连续波雷达进行睡眠呼吸暂停的事件级识别。

Event-Level Identification of Sleep Apnea Using FMCW Radar.

作者信息

Zhang Hao, Bo Shining, Zhang Xuan, Wang Peng, Du Lidong, Li Zhenfeng, Wu Pang, Chen Xianxiang, Jiang Libin, Fang Zhen

机构信息

Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCAS), Beijing 100094, China.

School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Bioengineering (Basel). 2025 Apr 8;12(4):399. doi: 10.3390/bioengineering12040399.

Abstract

Sleep apnea, characterized by its high prevalence and serious health consequences, faces a critical bottleneck in diagnosis. Polysomnography (PSG), the gold standard, is costly and cumbersome, while wearable devices struggle with quality control and patient compliance, rendering them as unsuitable for both large-scale screening and continuous monitoring. To address these challenges, this research introduces a contactless, low-cost, and accurate event-level sleep apnea detection method leveraging frequency-modulated continuous-wave (FMCW) radar technology. The core of our approach is a novel deep-learning model, built upon the U-Net architecture and augmented with self-attention mechanisms and squeeze-and-excitation (SE) modules, meticulously designed for the precise event-level segmentation of sleep apnea from FMCW radar signals. Crucially, we integrate blood oxygen saturation (SpO) prediction as an auxiliary task within a multitask-learning framework to enhance the model's feature extraction capabilities and clinical utility by capturing physiological correlations between apnea events and oxygen levels. Rigorous evaluation in a clinical dataset, comprising data from 35 participants, with synchronized PSG and radar data demonstrated a performance exceeding that of the baseline methods (Base U-Net and CNN-MHA), achieving a high level of accuracy in event-level segmentation (with an F1-score of 0.8019) and OSA severity grading (91.43%). These findings underscore the significant potential of our radar-based event-level detection system as a non-contact, low-cost, and accurate solution for OSA assessment. This technology offers a promising avenue for transforming sleep apnea diagnosis, making large-scale screening and continuous home monitoring a practical reality and ultimately leading to improved patient outcomes and public health impacts.

摘要

睡眠呼吸暂停因其高患病率和严重的健康后果,在诊断上面临着关键瓶颈。多导睡眠图(PSG)作为金标准,成本高昂且操作繁琐,而可穿戴设备在质量控制和患者依从性方面存在问题,使其不适用于大规模筛查和连续监测。为应对这些挑战,本研究引入了一种利用调频连续波(FMCW)雷达技术的非接触式、低成本且准确的事件级睡眠呼吸暂停检测方法。我们方法的核心是一个新颖的深度学习模型,它基于U-Net架构构建,并通过自注意力机制和挤压激励(SE)模块进行增强,精心设计用于从FMCW雷达信号中精确地进行睡眠呼吸暂停的事件级分割。至关重要的是,我们将血氧饱和度(SpO)预测作为多任务学习框架内的辅助任务进行整合,以通过捕捉呼吸暂停事件与血氧水平之间的生理相关性来增强模型的特征提取能力和临床实用性。在一个包含35名参与者数据的临床数据集中进行的严格评估,该数据集具有同步的PSG和雷达数据,结果表明其性能超过了基线方法(基础U-Net和CNN-MHA),在事件级分割(F1分数为0.8019)和阻塞性睡眠呼吸暂停严重程度分级(91.43%)方面达到了很高的准确率。这些发现强调了我们基于雷达的事件级检测系统作为一种用于阻塞性睡眠呼吸暂停评估的非接触式、低成本且准确的解决方案的巨大潜力。这项技术为改变睡眠呼吸暂停诊断提供了一条有前景的途径,使大规模筛查和持续的家庭监测成为现实,并最终改善患者预后和对公共健康产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d16e/12024617/2051d94ac297/bioengineering-12-00399-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验