Suppr超能文献

使用卷积神经网络-Transformer网络和非接触式呼吸振动信号预测睡眠呼吸暂停事件

Prediction of Sleep Apnea Events Using a CNN-Transformer Network and Contactless Breathing Vibration Signals.

作者信息

Chen Yuhang, Yang Shuchen, Li Huan, Wang Lirong, Wang Bidou

机构信息

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.

出版信息

Bioengineering (Basel). 2023 Jun 21;10(7):746. doi: 10.3390/bioengineering10070746.

Abstract

It is estimated that globally 425 million subjects have moderate to severe obstructive sleep apnea (OSA). The accurate prediction of sleep apnea events can offer insight into the development of treatment therapies. However, research related to this prediction is currently limited. We developed a covert framework for the prediction of sleep apnea events based on low-frequency breathing-induced vibrations obtained from piezoelectric sensors. A CNN-transformer network was utilized to efficiently extract local and global features from respiratory vibration signals for accurate prediction. Our study involved overnight recordings of 105 subjects. In five-fold cross-validation, we achieved an accuracy of 85.9% and an F1 score of 85.8%, which are 3.5% and 5.3% higher than the best-performed classical model, respectively. Additionally, in leave-one-out cross-validation, 2.3% and 3.8% improvements are observed, respectively. Our proposed CNN-transformer model is effective in the prediction of sleep apnea events. Our framework can thus provide a new perspective for improving OSA treatment modes and clinical management.

摘要

据估计,全球有4.25亿人患有中度至重度阻塞性睡眠呼吸暂停(OSA)。准确预测睡眠呼吸暂停事件有助于深入了解治疗方法的发展。然而,目前关于这一预测的研究有限。我们基于从压电传感器获得的低频呼吸引起的振动,开发了一个用于预测睡眠呼吸暂停事件的隐蔽框架。利用卷积神经网络-变压器(CNN-transformer)网络从呼吸振动信号中有效提取局部和全局特征,以进行准确预测。我们的研究涉及对105名受试者进行整夜记录。在五折交叉验证中,我们的准确率达到85.9%,F1分数达到85.8%,分别比表现最佳的经典模型高出3.5%和5.3%。此外,在留一法交叉验证中,分别观察到2.3%和3.8%的改进。我们提出的CNN-变压器模型在预测睡眠呼吸暂停事件方面是有效的。因此,我们的框架可以为改善OSA治疗模式和临床管理提供一个新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa8d/10376604/d999565ce752/bioengineering-10-00746-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验