Suppr超能文献

基于纳米技术的肿瘤血管靶向策略的最新进展。

Recent advances of nanotechnology-based tumor vessel-targeting strategies.

机构信息

School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.

Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

出版信息

J Nanobiotechnology. 2021 Dec 20;19(1):435. doi: 10.1186/s12951-021-01190-y.

Abstract

Tumor vessels can provide oxygen and nutrition for solid tumor tissue, create abnormal tumor microenvironment (TME), and play a vital role in the development, immune escape, metastasis and drug resistance of tumor. Tumor vessel-targeting therapy has become an important and promising direction in anti-tumor therapy, with the development of five anti-tumor therapeutic strategies, including vascular disruption, anti-angiogenesis, vascular blockade, vascular normalization and breaking immunosuppressive TME. However, the insufficient drug accumulation and severe side effects of vessel-targeting drugs limit their development in clinical application. Nanotechnology offers an excellent platform with flexible modified surface that can precisely deliver diverse cargoes, optimize efficacy, reduce side effects, and realize the combined therapy. Various nanomedicines (NMs) have been developed to target abnormal tumor vessels and specific TME to achieve more efficient vessel-targeting therapy. The article reviews tumor vascular abnormalities and the resulting abnormal microenvironment, the application of NMs in the tumor vessel-targeting strategies, and how NMs can improve these strategies and achieve multi-strategies combination to maximize anti-tumor effects.

摘要

肿瘤血管可为实体瘤组织提供氧气和营养,营造异常的肿瘤微环境(TME),在肿瘤的发生发展、免疫逃逸、转移和耐药中发挥重要作用。肿瘤血管靶向治疗已成为抗肿瘤治疗的一个重要且有前景的方向,随着五种抗肿瘤治疗策略的发展,包括血管破坏、抗血管生成、血管阻断、血管正常化和打破免疫抑制性 TME。然而,血管靶向药物的药物蓄积不足和严重的副作用限制了其在临床应用中的发展。纳米技术提供了一个极好的平台,具有灵活的可修饰表面,可以精确递送各种货物,优化疗效,减少副作用,并实现联合治疗。已经开发出各种纳米药物(NMs)来靶向异常的肿瘤血管和特定的 TME,以实现更有效的血管靶向治疗。本文综述了肿瘤血管的异常及其导致的异常微环境,NMs 在肿瘤血管靶向策略中的应用,以及 NMs 如何改善这些策略并实现多策略联合,以最大限度地发挥抗肿瘤作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2890/8686559/658997b8d6c9/12951_2021_1190_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验