Suppr超能文献

统一模型涉及基因组学、磁共振成像和前列腺特异性抗原密度,在预测低危前列腺癌主动监测患者活检升级方面优于个体协变量。

Unified model involving genomics, magnetic resonance imaging and prostate-specific antigen density outperforms individual co-variables at predicting biopsy upgrading in patients on active surveillance for low risk prostate cancer.

机构信息

Department of Urology, Icahn School of Medicine at Mount Sinai, New York, USA.

Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA.

出版信息

Cancer Rep (Hoboken). 2022 Mar;5(3):e1492. doi: 10.1002/cnr2.1492. Epub 2021 Dec 20.

Abstract

BACKGROUND

Active surveillance (AS) is the reference standard treatment for the management of low risk prostate cancer (PCa). Accurate assessment of tumor aggressiveness guides recruitment to AS programs to avoid conservative treatment of intermediate and higher risk patients. Nevertheless, underestimating the disease risk may occur in some patients recruited, with biopsy upgrading and the concomitant potential for delayed treatment.

AIM

To evaluate the accuracy of mpMRI and GPS for the prediction of biopsy upgrading during active surveillance (AS) management of prostate cancer (PCa).

METHOD

A retrospective analysis was performed on 144 patients recruited to AS from October 2013 to December 2020. Median follow was 4.8 (IQR 3.6, 6.3) years. Upgrading was defined as upgrading to biopsy grade group ≥2 on follow up biopsies. Cox proportional hazard regression was used to investigate the effect of PSA density (PSAD), baseline Prostate Imaging-Reporting and Data System (PI-RADS) v2.1 score and GPS on upgrading. Time-to-event outcome, defined as upgrading, was estimated using the Kaplan-Meier method with log-rank test.

RESULTS

Overall rate of upgrading was 31.9% (n = 46). PSAD was higher in the patients who were upgraded (0.12 vs. 0.08 ng/ml , p = .005), while no significant difference was present for median GPS in the overall cohort (overall median GPS 21; 22 upgrading vs. 20 no upgrading, p = .2044). On univariable cox proportional hazard regression analysis, the factors associated with increased risk of biopsy upgrading were PSA (HR = 1.30, CI 1.16-1.47, p = <.0001), PSAD (HR = 1.08, CI 1.05-1.12, p = <.0001) and higher PI-RADS score (HR = 3.51, CI 1.56-7.91, p = .0024). On multivariable cox proportional hazard regression analysis, only PSAD (HR = 1.10, CI 1.06-1.14, p = <.001) and high PI-RADS score (HR = 4.11, CI 1.79-9.44, p = .0009) were associated with upgrading. A cox regression model combining these three clinical features (PSAD ≥0.15 ng/ml at baseline, PI-RADS Score and GPS) yielded a concordance index of 0.71 for the prediction of upgrading.

CONCLUSION

In this study PSAD has higher accuracy over baseline PI-RADS score and GPS score for the prediction of PCa upgrading during AS. However, combined use of PSAD, GPS and PI-RADS Score yielded the highest predictive ability with a concordance index of 0.71.

摘要

背景

主动监测(AS)是管理低危前列腺癌(PCa)的标准治疗方法。肿瘤侵袭性的准确评估指导患者招募进入 AS 项目,以避免对中高危患者进行保守治疗。然而,在一些被招募的患者中,可能会低估疾病风险,导致活检升级和潜在的延迟治疗。

目的

评估 MRI 与前列腺健康指数(GPS)在预测主动监测(AS)管理中前列腺癌(PCa)活检升级中的准确性。

方法

回顾性分析了 2013 年 10 月至 2020 年 12 月期间招募的 144 名 AS 患者。中位随访时间为 4.8 年(IQR 3.6-6.3 年)。升级定义为后续活检中活检分级≥2 级。采用 Cox 比例风险回归分析 PSA 密度(PSAD)、基线前列腺影像报告和数据系统(PI-RADS)v2.1 评分和 GPS 对升级的影响。使用 Kaplan-Meier 方法和对数秩检验估计时间事件结局(定义为升级)。

结果

总的升级率为 31.9%(n=46)。升级患者的 PSAD 更高(0.12 vs. 0.08ng/ml,p=0.005),而总体队列中 GPS 的中位数没有显著差异(总体中位数 GPS 为 21;22 例升级,20 例未升级,p=0.2044)。在单变量 Cox 比例风险回归分析中,与活检升级风险增加相关的因素包括 PSA(HR=1.30,CI 1.16-1.47,p<0.0001)、PSAD(HR=1.08,CI 1.05-1.12,p<0.0001)和较高的 PI-RADS 评分(HR=3.51,CI 1.56-7.91,p=0.0024)。在多变量 Cox 比例风险回归分析中,仅 PSAD(HR=1.10,CI 1.06-1.14,p<0.001)和高 PI-RADS 评分(HR=4.11,CI 1.79-9.44,p=0.0009)与升级相关。结合这三个临床特征(基线 PSAD≥0.15ng/ml、PI-RADS 评分和 GPS)的 Cox 回归模型,对升级的预测一致性指数为 0.71。

结论

在这项研究中,PSAD 比基线 PI-RADS 评分和 GPS 评分对 AS 期间 PCa 升级的预测具有更高的准确性。然而,PSAD、GPS 和 PI-RADS 评分的联合使用具有最高的预测能力,一致性指数为 0.71。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7875/8955055/2582e7308f8d/CNR2-5-e1492-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验