Suppr超能文献

在体内和基于细胞的 Drosophila 研究中最先进的 CRISPR。

State-of-the-art CRISPR for in vivo and cell-based studies in Drosophila.

机构信息

Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Trends Genet. 2022 May;38(5):437-453. doi: 10.1016/j.tig.2021.11.006. Epub 2021 Dec 18.

Abstract

For more than 100 years, the fruit fly, Drosophila melanogaster, has served as a powerful model organism for biological and biomedical research due to its many genetic and physiological similarities to humans and the availability of sophisticated technologies used to manipulate its genome and genes. The Drosophila research community quickly adopted CRISPR technologies and, in the 8 years since the first clustered regularly interspaced short palindromic repeats (CRISPR) publications in flies, has explored and innovated methods for mutagenesis, precise genome engineering, and beyond. Moreover, the short lifespan and ease of genetics have made Drosophila an ideal testing ground for in vivo applications and refinements of the rapidly evolving set of CRISPR-associated (CRISPR-Cas) tools. Here, we review innovations in delivery of CRISPR reagents, increased efficiency of cutting and homology-directed repair (HDR), and alternatives to standard Cas9-based approaches. While the focus is primarily on in vivo systems, we also describe the role of Drosophila cultured cells as both an indispensable first step in the process of assessing new CRISPR technologies and a platform for genome-wide CRISPR pooled screens.

摘要

100 多年来,果蝇(Drosophila melanogaster)因其与人类在许多遗传和生理方面的相似性,以及可用于操纵其基因组和基因的复杂技术,一直是生物学和生物医学研究的有力模式生物。果蝇研究界迅速采用了 CRISPR 技术,自首次在果蝇中发表关于成簇规律间隔短回文重复序列(CRISPR)的论文以来的 8 年中,已经探索和创新了诱变、精确基因组工程等方法。此外,果蝇的短寿命和易于遗传的特点使其成为体内应用和快速发展的 CRISPR 相关(CRISPR-Cas)工具集的改进的理想测试平台。在这里,我们回顾了 CRISPR 试剂传递、切割和同源定向修复(HDR)效率的提高,以及替代标准 Cas9 方法的创新。虽然重点主要是体内系统,但我们还描述了果蝇培养细胞的作用,作为评估新的 CRISPR 技术过程中不可或缺的第一步,以及全基因组 CRISPR 池筛选的平台。

相似文献

3
Multiplexed conditional genome editing with Cas12a in .利用 Cas12a 在 中进行多重条件基因组编辑。
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22890-22899. doi: 10.1073/pnas.2004655117. Epub 2020 Aug 25.
4
A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.果蝇中基于CRISPR的基因组编辑系统工具包
J Genet Genomics. 2015 Apr 20;42(4):141-9. doi: 10.1016/j.jgg.2015.02.007. Epub 2015 Mar 12.
8
Precision genome editing in the CRISPR era.CRISPR时代的精准基因组编辑。
Biochem Cell Biol. 2017 Apr;95(2):187-201. doi: 10.1139/bcb-2016-0137. Epub 2016 Sep 29.
9

引用本文的文献

5
Generating CRISPR-edited clonal lines of cultured S2 cells.生成经CRISPR编辑的培养S2细胞克隆系。
Biol Methods Protoc. 2024 Aug 17;9(1):bpae059. doi: 10.1093/biomethods/bpae059. eCollection 2024.

本文引用的文献

1
Base Editing of Somatic Cells Using CRISPR-Cas9 in .利用 CRISPR-Cas9 在 中对体细胞进行碱基编辑。
CRISPR J. 2021 Dec;4(6):836-845. doi: 10.1089/crispr.2021.0062. Epub 2021 Nov 23.
2
Engineered pegRNAs improve prime editing efficiency.工程化的 pegRNA 可提高 Prime 编辑效率。
Nat Biotechnol. 2022 Mar;40(3):402-410. doi: 10.1038/s41587-021-01039-7. Epub 2021 Oct 4.
7
Precise genome engineering in using prime editing.利用 Prime Editing 在 中进行精确的基因组工程。
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2021996118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验