Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458;
Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2119237119.
Cyclic adenosine monophosphate (cAMP) is a pivotal second messenger with an essential role in neuronal function. cAMP synthesis by adenylyl cyclases (AC) is controlled by G protein-coupled receptor (GPCR) signaling systems. However, the network of molecular players involved in the process is incompletely defined. Here, we used CRISPR/Cas9-based screening to identify that members of the potassium channel tetradimerization domain (KCTD) family are major regulators of cAMP signaling. Focusing on striatal neurons, we show that the dominant isoform KCTD5 exerts its effects through an unusual mechanism that modulates the influx of Zn via the Zip14 transporter to exert unique allosteric effects on AC. We further show that KCTD5 controls the amplitude and sensitivity of stimulatory GPCR inputs to cAMP production by Gβγ-mediated AC regulation. Finally, we report that KCTD5 haploinsufficiency in mice leads to motor deficits that can be reversed by chelating Zn Together, our findings uncover KCTD proteins as major regulators of neuronal cAMP signaling via diverse mechanisms.
环磷酸腺苷 (cAMP) 是一种关键的第二信使,在神经元功能中起着重要作用。腺苷酸环化酶 (AC) 的 cAMP 合成受 G 蛋白偶联受体 (GPCR) 信号系统的控制。然而,涉及该过程的分子参与者网络尚未完全定义。在这里,我们使用基于 CRISPR/Cas9 的筛选来鉴定四聚体化结构域 (KCTD) 家族的钾通道成员是 cAMP 信号的主要调节剂。我们专注于纹状体神经元,表明主要同工型 KCTD5 通过一种不寻常的机制发挥作用,该机制通过 Zip14 转运体调节 Zn 的内流,从而对 AC 产生独特的变构效应。我们进一步表明,KCTD5 通过 Gβγ 介导的 AC 调节来控制刺激 GPCR 输入对 cAMP 产生的幅度和敏感性。最后,我们报告说,小鼠的 KCTD5 杂合不足会导致运动缺陷,而通过螯合 Zn 可以逆转这些缺陷。总之,我们的发现揭示了 KCTD 蛋白通过多种机制成为神经元 cAMP 信号的主要调节剂。