Herrera-Bravo Jesús, Farías Jorge G, Contreras Fernanda Parraguez, Herrera-Belén Lisandra, Norambuena Juan-Alejandro, Beltrán Jorge F
Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.
Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile.
Int J Pept Res Ther. 2022;28(1):35. doi: 10.1007/s10989-021-10345-2. Epub 2021 Dec 17.
Viral antigens are key in the development of vaccines that prevent or eradicate infections caused by these pathogens. Bioinformatics tools are modern alternatives that facilitate the discovery of viral antigens, reducing the costs of experimental assays. We developed a bioinformatics tool called VirVACPRED, which is highly efficient in predicting viral antigens. In this study, we obtained a model based on the gradient boosting classifier, which showed high performance during the training, leave-one-out cross-validation (accuracy = 0.7402, sensitivity = 0.7319, precision = 0.7503, F1 = 0.7251, kappa = 0.4774, Matthews correlation coefficient = 0.4981) and testing (accuracy = 0.8889, sensitivity = 1.0, precision = 0.8276, F1 = 0.9057, kappa = 0.7734, Matthews correlation coefficient = 0.7941). VirVACPRED is a robust tool that can be of great help in the search and proposal of new viral antigens, which can be considered in the development of future vaccines against infections caused by viruses.
病毒抗原是预防或根除由这些病原体引起的感染的疫苗研发中的关键因素。生物信息学工具是现代替代方法,有助于发现病毒抗原,降低实验检测成本。我们开发了一种名为VirVACPRED的生物信息学工具,它在预测病毒抗原方面效率很高。在本研究中,我们获得了一个基于梯度提升分类器的模型,该模型在训练、留一法交叉验证(准确率 = 0.7402,灵敏度 = 0.7319,精确率 = 0.7503,F1值 = 0.7251,kappa值 = 0.4774,马修斯相关系数 = 0.4981)和测试(准确率 = 0.8889,灵敏度 = 1.0,精确率 = 0.8276,F1值 = 0.9057,kappa值 = 0.7734,马修斯相关系数 = 0.7941)过程中均表现出高性能。VirVACPRED是一个强大的工具,在寻找和提出新的病毒抗原方面有很大帮助,这些抗原可在未来针对病毒感染的疫苗研发中加以考虑。