Ness Gal, Lam Manolo R, Alt Wolfgang, Meschede Dieter, Sagi Yoav, Alberti Andrea
Physics Department, Technion-Israel Institute of Technology, IL-32000 Haifa, Israel.
Institut für Angewandte Physik, Universität Bonn, 53115 Bonn, Germany.
Sci Adv. 2021 Dec 24;7(52):eabj9119. doi: 10.1126/sciadv.abj9119. Epub 2021 Dec 22.
Quantum mechanics sets fundamental limits on how fast quantum states can be transformed in time. Two well-known quantum speed limits are the Mandelstam-Tamm and the Margolus-Levitin bounds, which relate the maximum speed of evolution to the system’s energy uncertainty and mean energy, respectively. Here, we test concurrently both limits in a multilevel system by following the motion of a single atom in an optical trap using fast matter wave interferometry. We find two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit occurs at longer times. We take a geometric approach to quantify the deviation from the speed limit, measuring how much the quantum evolution deviates from the geodesic path in the Hilbert space of the multilevel system. Our results are important to understand the ultimate performance of quantum computing devices and related advanced quantum technologies.
量子力学对量子态随时间变换的速度设定了基本限制。两个著名的量子速度限制是曼德尔斯塔姆 - 塔姆限制和马戈卢斯 - 莱维廷界限,它们分别将最大演化速度与系统的能量不确定性和平均能量联系起来。在此,我们通过使用快速物质波干涉测量法追踪光阱中单个原子的运动,在一个多能级系统中同时测试这两个限制。我们发现了两种不同的情况:一种是曼德尔斯塔姆 - 塔姆限制在所有时间都对演化起约束作用,另一种是在较长时间会出现向马戈卢斯 - 莱维廷限制的转变。我们采用一种几何方法来量化与速度限制的偏差,测量量子演化在多能级系统的希尔伯特空间中偏离测地线的程度。我们的结果对于理解量子计算设备及相关先进量子技术的极限性能具有重要意义。