Suppr超能文献

线粒体 DNA 损伤作为细胞结果的驱动因素。

Mitochondrial DNA damage as driver of cellular outcomes.

机构信息

Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina.

Department of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico.

出版信息

Am J Physiol Cell Physiol. 2022 Feb 1;322(2):C136-C150. doi: 10.1152/ajpcell.00389.2021. Epub 2021 Dec 22.

Abstract

Mitochondria are primarily involved in energy production through the process of oxidative phosphorylation (OXPHOS). Increasing evidence has shown that mitochondrial function impacts a plethora of different cellular activities, including metabolism, epigenetics, and innate immunity. Like the nucleus, mitochondria own their genetic material, but this organellar genome is circular, present in multiple copies, and maternally inherited. The mitochondrial DNA (mtDNA) encodes 37 genes that are solely involved in OXPHOS. Maintenance of mtDNA, through replication and repair, requires the import of nuclear DNA-encoded proteins. Thus, mitochondria completely rely on the nucleus to prevent mitochondrial genetic alterations. As most cells contain hundreds to thousands of mitochondria, it follows that the shear number of organelles allows for the buffering of dysfunction-at least to some extent-before tissue homeostasis becomes impaired. Only red blood cells lack mitochondria entirely. Impaired mitochondrial function is a hallmark of aging and is involved in a number of different disorders, including neurodegenerative diseases, diabetes, cancer, and autoimmunity. Although alterations in mitochondrial processes unrelated to OXPHOS, such as fusion and fission, contribute to aging and disease, maintenance of mtDNA integrity is critical for proper organellar function. Here, we focus on how mtDNA damage contributes to cellular dysfunction and health outcomes.

摘要

线粒体主要通过氧化磷酸化(OXPHOS)过程参与能量产生。越来越多的证据表明,线粒体功能会影响多种不同的细胞活动,包括代谢、表观遗传学和先天免疫。与细胞核一样,线粒体拥有自己的遗传物质,但这种细胞器的基因组是圆形的,存在多个拷贝,并通过母系遗传。线粒体 DNA(mtDNA)编码仅参与 OXPHOS 的 37 个基因。通过复制和修复来维持 mtDNA 需要核 DNA 编码蛋白的输入。因此,线粒体完全依赖于细胞核来防止线粒体遗传改变。由于大多数细胞含有数百到数千个线粒体,因此细胞器的数量之多可以缓冲功能障碍——至少在一定程度上——防止组织稳态受到损害。只有红细胞完全缺乏线粒体。线粒体功能受损是衰老的标志,与许多不同的疾病有关,包括神经退行性疾病、糖尿病、癌症和自身免疫性疾病。尽管与 OXPHOS 无关的线粒体过程的改变,如融合和裂变,会导致衰老和疾病,但 mtDNA 完整性的维持对于细胞器的正常功能至关重要。在这里,我们重点关注 mtDNA 损伤如何导致细胞功能障碍和健康结果。

相似文献

1
Mitochondrial DNA damage as driver of cellular outcomes.线粒体 DNA 损伤作为细胞结果的驱动因素。
Am J Physiol Cell Physiol. 2022 Feb 1;322(2):C136-C150. doi: 10.1152/ajpcell.00389.2021. Epub 2021 Dec 22.
4
Significance of Mitochondria DNA Mutations in Diseases.线粒体 DNA 突变在疾病中的意义。
Adv Exp Med Biol. 2017;1038:219-230. doi: 10.1007/978-981-10-6674-0_15.
5
DNA damage related crosstalk between the nucleus and mitochondria.细胞核与线粒体之间与DNA损伤相关的相互作用。
Free Radic Biol Med. 2017 Jun;107:216-227. doi: 10.1016/j.freeradbiomed.2016.11.050. Epub 2016 Nov 30.
8
Mitochondrial biogenesis: pharmacological approaches.线粒体生物合成:药理学方法。
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
10
Mitochondrial DNA copy number in human disease: the more the better?线粒体 DNA 拷贝数与人类疾病:多多益善?
FEBS Lett. 2021 Apr;595(8):976-1002. doi: 10.1002/1873-3468.14021. Epub 2020 Dec 25.

引用本文的文献

本文引用的文献

2
Chemotherapy and peripheral neuropathy.化疗与周围神经病。
Neurol Sci. 2021 Oct;42(10):4109-4121. doi: 10.1007/s10072-021-05576-6. Epub 2021 Aug 26.
5
The Mitochondrial Response to DNA Damage.线粒体对DNA损伤的反应。
Front Cell Dev Biol. 2021 May 12;9:669379. doi: 10.3389/fcell.2021.669379. eCollection 2021.
8
Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance.线粒体 DNA 断裂的核感应增强免疫监视。
Nature. 2021 Mar;591(7850):477-481. doi: 10.1038/s41586-021-03269-w. Epub 2021 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验