Shetty Mahesh Shivarama, Ris Laurence, Schindler Roland F R, Mizuno Keiko, Fedele Laura, Giese Karl Peter, Brand Thomas, Abel Ted
Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
Cereb Cortex. 2022 Aug 3;32(16):3457-3471. doi: 10.1093/cercor/bhab426.
Extensive research has uncovered diverse forms of synaptic plasticity and an array of molecular signaling mechanisms that act as positive or negative regulators. Specifically, cyclic 3',5'-cyclic adenosine monophosphate (cAMP)-dependent signaling pathways are crucially implicated in long-lasting synaptic plasticity. In this study, we examine the role of Popeye domain-containing protein 1 (POPDC1) (or blood vessel epicardial substance (BVES)), a cAMP effector protein, in modulating hippocampal synaptic plasticity. Unlike other cAMP effectors, such as protein kinase A (PKA) and exchange factor directly activated by cAMP, POPDC1 is membrane-bound and the sequence of the cAMP-binding cassette differs from canonical cAMP-binding domains, suggesting that POPDC1 may have an unique role in cAMP-mediated signaling. Our results show that Popdc1 is widely expressed in various brain regions including the hippocampus. Acute hippocampal slices from Popdc1 knockout (KO) mice exhibit PKA-dependent enhancement in CA1 long-term potentiation (LTP) in response to weaker stimulation paradigms, which in slices from wild-type mice induce only transient LTP. Loss of POPDC1, while not affecting basal transmission or input-specificity of LTP, results in altered response during high-frequency stimulation. Popdc1 KO mice also show enhanced forskolin-induced potentiation. Overall, these findings reveal POPDC1 as a novel negative regulator of hippocampal synaptic plasticity and, together with recent evidence for its interaction with phosphodiesterases (PDEs), suggest that POPDC1 is involved in modulating activity-dependent local cAMP-PKA-PDE signaling.
广泛的研究揭示了多种形式的突触可塑性以及一系列作为正向或负向调节因子的分子信号传导机制。具体而言,环磷酸腺苷(cAMP)依赖性信号通路在持久的突触可塑性中起着至关重要的作用。在本研究中,我们研究了含大力水手结构域蛋白1(POPDC1)(或血管心外膜物质(BVES))这一cAMP效应蛋白在调节海马突触可塑性中的作用。与其他cAMP效应蛋白不同,如蛋白激酶A(PKA)和直接由cAMP激活的交换因子,POPDC1是膜结合的,且cAMP结合盒的序列不同于典型的cAMP结合结构域,这表明POPDC1可能在cAMP介导的信号传导中具有独特作用。我们的结果表明,Popdc1在包括海马体在内的各个脑区广泛表达。来自Popdc1基因敲除(KO)小鼠的急性海马切片在较弱刺激模式下表现出PKA依赖性的CA1区长期增强(LTP)增强,而野生型小鼠的切片在相同刺激下仅诱导短暂的LTP。POPDC1的缺失虽然不影响基础传递或LTP的输入特异性,但会导致高频刺激期间反应改变。Popdc1基因敲除小鼠还表现出福斯高林诱导的增强作用增强。总体而言,这些发现揭示了POPDC1是海马突触可塑性的一种新型负向调节因子,并且与最近关于其与磷酸二酯酶(PDEs)相互作用的证据一起,表明POPDC1参与调节活动依赖性局部cAMP - PKA - PDE信号传导。