Suppr超能文献

人工智能和物联网在临床医学中的应用:综述与挑战。

Application of AI and IoT in Clinical Medicine: Summary and Challenges.

机构信息

Neusoft Hifly Medical Technology Co., Ltd, Shenyang, 110179, China.

Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.

出版信息

Curr Med Sci. 2021 Dec;41(6):1134-1150. doi: 10.1007/s11596-021-2486-z. Epub 2021 Dec 22.

Abstract

The application of artificial intelligence (AI) technology in the medical field has experienced a long history of development. In turn, some long-standing points and challenges in the medical field have also prompted diverse research teams to continue to explore AI in depth. With the development of advanced technologies such as the Internet of Things (IoT), cloud computing, big data, and 5G mobile networks, AI technology has been more widely adopted in the medical field. In addition, the in-depth integration of AI and IoT technology enables the gradual improvement of medical diagnosis and treatment capabilities so as to provide services to the public in a more effective way. In this work, we examine the technical basis of IoT, cloud computing, big data analysis and machine learning involved in clinical medicine, combined with concepts of specific algorithms such as activity recognition, behavior recognition, anomaly detection, assistant decision-making system, to describe the scenario-based applications of remote diagnosis and treatment collaboration, neonatal intensive care unit, cardiology intensive care unit, emergency first aid, venous thromboembolism, monitoring nursing, image-assisted diagnosis, etc. We also systematically summarize the application of AI and IoT in clinical medicine, analyze the main challenges thereof, and comment on the trends and future developments in this field.

摘要

人工智能(AI)技术在医疗领域的应用经历了漫长的发展历程。反过来,医疗领域的一些长期存在的问题和挑战也促使不同的研究团队继续深入探索 AI。随着物联网(IoT)、云计算、大数据和 5G 移动网络等先进技术的发展,AI 技术在医疗领域得到了更广泛的应用。此外,AI 和物联网技术的深度融合使得医疗诊断和治疗能力逐步提高,从而能够以更有效的方式为公众提供服务。在这项工作中,我们研究了物联网、云计算、大数据分析和机器学习等在临床医学中涉及的技术基础,结合活动识别、行为识别、异常检测、辅助决策系统等具体算法的概念,描述了远程诊断和治疗协作、新生儿重症监护病房、心脏病重症监护病房、急救、静脉血栓栓塞、监测护理、图像辅助诊断等场景下的应用。我们还系统地总结了 AI 和物联网在临床医学中的应用,分析了其中的主要挑战,并对该领域的趋势和未来发展进行了评论。

相似文献

1
Application of AI and IoT in Clinical Medicine: Summary and Challenges.
Curr Med Sci. 2021 Dec;41(6):1134-1150. doi: 10.1007/s11596-021-2486-z. Epub 2021 Dec 22.
4
AIoT Used for COVID-19 Pandemic Prevention and Control.
Contrast Media Mol Imaging. 2021 Oct 13;2021:3257035. doi: 10.1155/2021/3257035. eCollection 2021.
5
Toward the Internet of Medical Things: Architecture, trends and challenges.
Math Biosci Eng. 2024 Jan;21(1):650-678. doi: 10.3934/mbe.2024028. Epub 2022 Dec 19.
7

引用本文的文献

1
Physically Transient Gelatin-Based Memristors of Buildable Logic Gates.
Gels. 2025 Jun 3;11(6):428. doi: 10.3390/gels11060428.
2
An analytic research and review of the literature on practice of artificial intelligence in healthcare.
Eur J Med Res. 2025 May 14;30(1):382. doi: 10.1186/s40001-025-02603-6.
4
Pinpointing the integration of artificial intelligence in liver cancer immune microenvironment.
Front Immunol. 2024 Dec 20;15:1520398. doi: 10.3389/fimmu.2024.1520398. eCollection 2024.
5
Assuring assistance to healthcare and medicine: Internet of Things, Artificial Intelligence, and Artificial Intelligence of Things.
Front Artif Intell. 2024 Dec 13;7:1442254. doi: 10.3389/frai.2024.1442254. eCollection 2024.
6
Application and Prospects of Deep Learning Technology in Fracture Diagnosis.
Curr Med Sci. 2024 Dec;44(6):1132-1140. doi: 10.1007/s11596-024-2928-5. Epub 2024 Nov 18.
8
Integrating Artificial Intelligence and Wearable IoT System in Long-Term Care Environments.
Sensors (Basel). 2023 Jun 26;23(13):5913. doi: 10.3390/s23135913.
10
Geriatric Care Management System Powered by the IoT and Computer Vision Techniques.
Healthcare (Basel). 2023 Apr 17;11(8):1152. doi: 10.3390/healthcare11081152.

本文引用的文献

1
An implementation science approach to evaluating pathogen whole genome sequencing in public health.
Genome Med. 2021 Jul 28;13(1):121. doi: 10.1186/s13073-021-00934-7.
2
[The future of neonatal intensive care based on the data-driven science].
Zhonghua Er Ke Za Zhi. 2021 Apr 2;59(4):261-263. doi: 10.3760/cma.j.cn112140-20210127-00079.
4
The role of artificial intelligence in medical imaging research.
BJR Open. 2019 Nov 28;2(1):20190031. doi: 10.1259/bjro.20190031. eCollection 2020.
5
A machine-learning algorithm for neonatal seizure recognition: a multicentre, randomised, controlled trial.
Lancet Child Adolesc Health. 2020 Oct;4(10):740-749. doi: 10.1016/S2352-4642(20)30239-X. Epub 2020 Aug 27.
6
Derivation and Validation of Novel Phenotypes of Multiple Organ Dysfunction Syndrome in Critically Ill Children.
JAMA Netw Open. 2020 Aug 3;3(8):e209271. doi: 10.1001/jamanetworkopen.2020.9271.
8
Automatic Grading System for Diabetic Retinopathy Diagnosis Using Deep Learning Artificial Intelligence Software.
Curr Eye Res. 2020 Dec;45(12):1550-1555. doi: 10.1080/02713683.2020.1764975. Epub 2020 May 15.
9
Genetic aetiology of early infant deaths in a neonatal intensive care unit.
J Med Genet. 2020 Mar;57(3):169-177. doi: 10.1136/jmedgenet-2019-106221. Epub 2019 Sep 9.
10
Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review.
J Am Coll Cardiol. 2019 Mar 26;73(11):1317-1335. doi: 10.1016/j.jacc.2018.12.054.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验