Suppr超能文献

基于雾计算的智能农场系统在物联网环境中的实现。

Implementation of Smart Farm Systems Based on Fog Computing in Artificial Intelligence of Things Environments.

作者信息

Hong Sukjun, Park Seongchan, Youn Heejun, Lee Jongyong, Kwon Soonchul

机构信息

Department of Smart System, Graduate School of Smart Convergence, Kwangwoon University, Seoul 01897, Republic of Korea.

Department of Plasma Bio Display, Kwangwoon University, Seoul 01897, Republic of Korea.

出版信息

Sensors (Basel). 2024 Oct 17;24(20):6689. doi: 10.3390/s24206689.

Abstract

Cloud computing has recently gained widespread attention owing to its use in applications involving the Internet of Things (IoT). However, the transmission of massive volumes of data to a cloud server often results in overhead. Fog computing has emerged as a viable solution to address this issue. This study implements an Artificial Intelligence of Things (AIoT) system based on fog computing on a smart farm. Three experiments are conducted to evaluate the performance of the AIoT system. First, network traffic volumes between systems employing and not employing fog computing are compared. Second, the performance of the communication protocols-hypertext transport protocol (HTTP), message queuing telemetry transport protocol (MQTT), and constrained application protocol (CoAP)-commonly used in IoT applications is assessed. Finally, a convolutional neural network-based algorithm is introduced to determine the maturity level of coffee tree images. Experimental data are collected over ten days from a coffee tree farm in the Republic of Korea. Notably, the fog computing system demonstrates a 26% reduction in the cumulative data volume compared with a non-fog system. MQTT exhibits stable results in terms of the data volume and loss rate. Additionally, the maturity level determination algorithm performed on coffee fruits provides reliable results.

摘要

云计算因其在涉及物联网(IoT)的应用中的使用而最近受到广泛关注。然而,将大量数据传输到云服务器往往会导致开销。雾计算已成为解决这一问题的可行方案。本研究在智能农场中实现了基于雾计算的物联网(AIoT)系统。进行了三个实验来评估AIoT系统的性能。首先,比较了采用和不采用雾计算的系统之间的网络流量。其次,评估了物联网应用中常用的通信协议——超文本传输协议(HTTP)、消息队列遥测传输协议(MQTT)和受限应用协议(CoAP)的性能。最后,引入了一种基于卷积神经网络的算法来确定咖啡树图像的成熟度水平。实验数据是从韩国的一个咖啡树农场在十天内收集的。值得注意的是,与非雾计算系统相比,雾计算系统的累积数据量减少了26%。MQTT在数据量和丢失率方面表现出稳定的结果。此外,对咖啡果实进行的成熟度水平判定算法提供了可靠的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a467/11510804/669f4323429f/sensors-24-06689-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验