Suppr超能文献

多硫化物在电解质锂硫电池中的形态和迁移。

Polysulfide Speciation and Migration in Catholyte Lithium-Sulfur Cells.

机构信息

Department of Physics, Chalmers University of Technology, 41296, Göteborg, Sweden.

出版信息

Chemphyschem. 2022 Feb 16;23(4):e202100853. doi: 10.1002/cphc.202100853. Epub 2022 Jan 12.

Abstract

Semi-liquid catholyte Lithium-Sulfur (Li-S) cells have shown to be a promising path to realize high energy density energy storage devices. In general, Li-S cells rely on the conversion of elemental sulfur to soluble polysulfide species. In the case of catholyte cells, the active material is added through polysulfide species dissolved in the electrolyte. Herein, we use operando Raman spectroscopy to track the speciation and migration of polysulfides in the catholyte to shed light on the processes taking place. Combined with ex-situ surface and electrochemical analysis we show that the migration of polysulfides is central in order to maximize the performance in terms of capacity (active material utilization) as well as interphase stability on the Li-metal anode during cycling. More specifically we show that using a catholyte where the polysulfides have the dual roles of active material and conducting species, e. g. no traditional Li-salt (such as LiTFSI) is present, results in a higher mobility and faster migration of polysulfides. We also reveal how the formation of long chain polysulfides in the catholyte is delayed during charge as a result of rapid formation and migration of shorter chain species, beneficial for reaching higher capacities. However, the depletion of ionic species during the last stage of charge, due to the conversion to and precipitation of elemental sulfur on the cathode support, results in polarization of the cell before full conversion can be achieved.

摘要

半液态电解液锂硫 (Li-S) 电池被证明是实现高能量密度储能装置的有前途的途径。一般来说,Li-S 电池依赖于元素硫向可溶性多硫化物物种的转化。在电解液电池的情况下,活性材料是通过溶解在电解质中的多硫化物物种添加的。在此,我们使用 operando 拉曼光谱来跟踪电解液中多硫化物的形态和迁移,以揭示发生的过程。结合原位表面和电化学分析,我们表明,多硫化物的迁移对于最大化性能(活性材料利用率)以及在循环过程中在 Li 金属阳极上的相间稳定性至关重要。更具体地说,我们表明,使用其中多硫化物具有双重作用的电解液,例如没有传统的 Li 盐(如 LiTFSI)存在,导致多硫化物具有更高的迁移率和更快的迁移率。我们还揭示了在充电过程中,由于短链物种的快速形成和迁移,长链多硫化物在电解液中的形成如何被延迟,这有利于达到更高的容量。然而,由于在阴极载体上发生的元素硫的转化和沉淀,在可以实现完全转化之前,离子物种在充电的最后阶段耗尽,导致电池极化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/17fb/9303647/0361ed31ca70/CPHC-23-0-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验