Suppr超能文献

一种纳入营养素摄入不足和过量发生率的替代营养丰富食物指数(NRF-ai)。

An Alternative Nutrient Rich Food Index (NRF-ai) Incorporating Prevalence of Inadequate and Excessive Nutrient Intake.

作者信息

Ridoutt Bradley

机构信息

Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Clayton, VIC 3169, Australia.

Department of Agricultural Economics, University of the Free State, Bloemfontein 9300, South Africa.

出版信息

Foods. 2021 Dec 20;10(12):3156. doi: 10.3390/foods10123156.

Abstract

Most nutrient profiling models give equal weight to nutrients irrespective of their ubiquity in the food system. There is also a degree of arbitrariness about which nutrients are included. In this study, an alternative Nutrient Rich Food index was developed (NRF-ai, where ai denotes adequate intake) incorporating prevalence of inadequate and excessive nutrient intake among Australian adults. Weighting factors for individual nutrients were based on a distance-to-target method using data from the Australian Health Survey describing the proportion of the population with usual intake less than the Estimated Average Requirement defined by the Nutrient Reference Values for Australia and New Zealand. All nutrients for which data were available were included, avoiding judgements about which nutrients to include, although some nutrients received little weight. Separate models were developed for females and males and for selected age groups, reflecting differences in nutrient requirements and usual intake. Application of the new nutrient profiling models is demonstrated for selected dairy products and alternatives, protein-rich foods, and discretionary foods. This approach emphasises the need to identify foods that are rich in those specific nutrients for which intake is below recommended levels and can be used to address specific nutrient gaps in subgroups such as older adults. In addition, the new nutrient profiling model is used to explore other sustainability aspects, including affordability (NRF-ai per AUD) and ecoefficiency (NRF-ai/environmental impact score).

摘要

大多数营养成分剖析模型对各种营养素一视同仁,而不考虑它们在食物系统中的普遍程度。在哪些营养素应被纳入方面也存在一定程度的随意性。在本研究中,开发了一种替代性的营养丰富食物指数(NRF-ai,其中ai表示适宜摄入量),该指数纳入了澳大利亚成年人中营养素摄入不足和过量的发生率。单个营养素的加权因子基于一种距离目标法,使用来自澳大利亚健康调查的数据,该数据描述了通常摄入量低于澳大利亚和新西兰营养素参考值定义的估计平均需求量的人群比例。纳入了所有有数据可用的营养素,避免了对纳入哪些营养素的主观判断,尽管有些营养素的权重较小。针对女性和男性以及选定的年龄组分别开发了模型,以反映营养素需求和通常摄入量的差异。对选定的乳制品及替代品、富含蛋白质的食物和自由支配食物展示了新的营养成分剖析模型的应用。这种方法强调了识别富含那些摄入量低于推荐水平的特定营养素的食物的必要性,并且可用于解决老年人群等亚组中的特定营养素缺口。此外,新的营养成分剖析模型用于探索其他可持续性方面,包括可承受性(每澳元的NRF-ai)和生态效率(NRF-ai/环境影响得分)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/525a/8701859/af8ad175bf98/foods-10-03156-g001.jpg

相似文献

7

本文引用的文献

10
Toward Healthy Diets from Sustainable Food Systems.迈向可持续粮食系统中的健康饮食。
Curr Dev Nutr. 2020 May 20;4(6):nzaa083. doi: 10.1093/cdn/nzaa083. eCollection 2020 Jun.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验