Suppr超能文献

通过经典性增加来量化退相干

Quantifying Decoherence via Increases in Classicality.

作者信息

Fu Shuangshuang, Luo Shunlong

机构信息

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Entropy (Basel). 2021 Nov 28;23(12):1594. doi: 10.3390/e23121594.

Abstract

As a direct consequence of the interplay between the superposition principle of quantum mechanics and the dynamics of open systems, decoherence is a recurring theme in both foundational and experimental exploration of the quantum realm. Decoherence is intimately related to information leakage of open systems and is usually formulated in the setup of "system + environment" as information acquisition of the environment (observer) from the system. As such, it has been mainly characterized via correlations (e.g., quantum mutual information, discord, and entanglement). Decoherence combined with redundant proliferation of the system information to multiple fragments of environment yields the scenario of quantum Darwinism, which is now a widely recognized framework for addressing the quantum-to-classical transition: the emergence of the apparent classical reality from the enigmatic quantum substrate. Despite the half-century development of the notion of decoherence, there are still many aspects awaiting investigations. In this work, we introduce two quantifiers of classicality via the Jordan product and uncertainty, respectively, and then employ them to quantify decoherence from an information-theoretic perspective. As a comparison, we also study the influence of the system on the environment.

摘要

作为量子力学叠加原理与开放系统动力学之间相互作用的直接结果,退相干是量子领域基础研究和实验探索中反复出现的主题。退相干与开放系统的信息泄漏密切相关,通常在“系统 + 环境”的设定中被表述为环境(观察者)从系统获取信息。因此,它主要通过相关性(例如量子互信息、量子失协与纠缠)来表征。退相干与系统信息向环境的多个片段的冗余扩散相结合,产生了量子达尔文主义的情形,这如今是一个被广泛认可的用于解决量子到经典转变的框架:即从神秘的量子基元中出现明显的经典实在。尽管退相干概念已有半个世纪的发展,但仍有许多方面有待研究。在这项工作中,我们分别通过约旦积和不确定性引入了两个经典性的量化指标,然后从信息论的角度用它们来量化退相干。作为比较,我们还研究了系统对环境的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4f1/8700208/31dae74d5b62/entropy-23-01594-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验