Borin Airton Monte Serrat, Humeau-Heurtier Anne, Virgílio Silva Luiz Eduardo, Murta Luiz Otávio
Federal Institute of Education, Science and Technology of Triangulo Mineiro, Uberaba 38064-790, Brazil.
LARIS-Laboratoire Angevin de Recherche en Ingénierie des Systèmes, University of Angers, 49035 Angers, France.
Entropy (Basel). 2021 Dec 1;23(12):1620. doi: 10.3390/e23121620.
Multiscale entropy (MSE) analysis is a fundamental approach to access the complexity of a time series by estimating its information creation over a range of temporal scales. However, MSE may not be accurate or valid for short time series. This is why previous studies applied different kinds of algorithm derivations to short-term time series. However, no study has systematically analyzed and compared their reliabilities. This study compares the MSE algorithm variations adapted to short time series on both human and rat heart rate variability (HRV) time series using long-term MSE as reference. The most used variations of MSE are studied: composite MSE (CMSE), refined composite MSE (RCMSE), modified MSE (MMSE), and their fuzzy versions. We also analyze the errors in MSE estimations for a range of incorporated fuzzy exponents. The results show that fuzzy MSE versions-as a function of time series length-present minimal errors compared to the non-fuzzy algorithms. The traditional multiscale entropy algorithm with fuzzy counting (MFE) has similar accuracy to alternative algorithms with better computing performance. For the best accuracy, the findings suggest different fuzzy exponents according to the time series length.
多尺度熵(MSE)分析是一种通过估计时间序列在一系列时间尺度上的信息创造来评估其复杂性的基本方法。然而,MSE对于短时间序列可能不准确或无效。这就是为什么先前的研究对短期时间序列应用了不同类型的算法推导。然而,没有研究系统地分析和比较它们的可靠性。本研究以长期MSE为参考,比较了适用于人类和大鼠心率变异性(HRV)时间序列的短时间序列的MSE算法变体。研究了最常用的MSE变体:复合MSE(CMSE)、改进复合MSE(RCMSE)、修正MSE(MMSE)及其模糊版本。我们还分析了一系列纳入的模糊指数的MSE估计中的误差。结果表明,与非模糊算法相比,模糊MSE版本作为时间序列长度的函数呈现出最小的误差。具有模糊计数的传统多尺度熵算法(MFE)与具有更好计算性能的替代算法具有相似的准确性。为了获得最佳准确性,研究结果根据时间序列长度建议了不同的模糊指数。