Suppr超能文献

基于受限最小误差熵准则改进的稳健基于脉冲的持续元学习

Robust Spike-Based Continual Meta-Learning Improved by Restricted Minimum Error Entropy Criterion.

作者信息

Yang Shuangming, Tan Jiangtong, Chen Badong

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China.

Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Entropy (Basel). 2022 Mar 25;24(4):455. doi: 10.3390/e24040455.

Abstract

The spiking neural network (SNN) is regarded as a promising candidate to deal with the great challenges presented by current machine learning techniques, including the high energy consumption induced by deep neural networks. However, there is still a great gap between SNNs and the online meta-learning performance of artificial neural networks. Importantly, existing spike-based online meta-learning models do not target the robust learning based on spatio-temporal dynamics and superior machine learning theory. In this invited article, we propose a novel spike-based framework with minimum error entropy, called MeMEE, using the entropy theory to establish the gradient-based online meta-learning scheme in a recurrent SNN architecture. We examine the performance based on various types of tasks, including autonomous navigation and the working memory test. The experimental results show that the proposed MeMEE model can effectively improve the accuracy and the robustness of the spike-based meta-learning performance. More importantly, the proposed MeMEE model emphasizes the application of the modern information theoretic learning approach on the state-of-the-art spike-based learning algorithms. Therefore, in this invited paper, we provide new perspectives for further integration of advanced information theory in machine learning to improve the learning performance of SNNs, which could be of great merit to applied developments with spike-based neuromorphic systems.

摘要

脉冲神经网络(SNN)被视为应对当前机器学习技术所带来巨大挑战的一个有前途的候选者,这些挑战包括深度神经网络引起的高能耗。然而,SNN与人工神经网络的在线元学习性能之间仍存在很大差距。重要的是,现有的基于脉冲的在线元学习模型并非基于时空动态和卓越的机器学习理论来进行稳健学习。在这篇特邀文章中,我们提出了一种具有最小误差熵的新型基于脉冲的框架,称为MeMEE,利用熵理论在循环SNN架构中建立基于梯度的在线元学习方案。我们基于各种类型的任务对性能进行了检验,包括自主导航和工作记忆测试。实验结果表明,所提出的MeMEE模型能够有效提高基于脉冲的元学习性能的准确性和稳健性。更重要的是,所提出的MeMEE模型强调了现代信息论学习方法在基于脉冲的先进学习算法上的应用。因此,在这篇特邀论文中,我们为在机器学习中进一步整合先进信息论以提高SNN的学习性能提供了新的视角,这对于基于脉冲的神经形态系统的应用开发可能具有很大价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/620c/9031894/9913be3c7c03/entropy-24-00455-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验