Suppr超能文献

近红外到近红外成像:使用具有可调高能量(TIGER)的谐波纳米颗粒的宽场显微镜将激发扩展至2.2μm。

NIR-to-NIR Imaging: Extended Excitation Up to 2.2 μm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope.

作者信息

Vittadello Laura, Klenen Jan, Koempe Karsten, Kocsor Laura, Szaller Zsuzsanna, Imlau Mirco

机构信息

Department of Physics, Osnabrueck University, 49076 Osnabrueck, Germany.

Research Center for Cellular Nanoanalytics, Osnabrueck (CellNanOs), Osnabrueck University, 49076 Osnabrueck, Germany.

出版信息

Nanomaterials (Basel). 2021 Nov 25;11(12):3193. doi: 10.3390/nano11123193.

Abstract

Near-infrared (NIR) marker-based imaging is of growing importance for deep tissue imaging and is based on a considerable reduction of optical losses at large wavelengths. We aim to extend the range of NIR excitation wavelengths particularly to values beyond 1.6 μm in order to profit from the low loss biological windows NIR-III and NIR-IV. We address this task by studying NIR-excitation to NIR-emission conversion and imaging in the range of 1200 up to 2400 nm at the example of harmonic Mg-doped lithium niobate nanoparticles (i) using a nonlinear diffuse femtosecond-pulse reflectometer and (ii) a Tunable hIGh EneRgy (TIGER) widefield microscope. We successfully demonstrate the existence of appropriate excitation/emission configurations in this spectral region taking harmonic generation into account. Moreover, NIR-imaging using the most striking configurations NIR-III to NIR-I, based on second harmonic generation (SHG), and NIR-IV to NIR-I, based on third harmonic generation (THG), is demonstrated with excitation wavelengths from 1.6-1.8 μm and from 2.1-2.2 μm, respectively. The advantages of the approach and the potential to additionally extend the emission range up to 2400 nm, making use of sum frequency generation (SFG) and difference frequency generation (DFG), are discussed.

摘要

基于近红外(NIR)标记的成像对于深层组织成像越来越重要,它基于在大波长下光学损耗的显著降低。我们旨在扩展近红外激发波长范围,特别是将其扩展到1.6μm以上的值,以便从近红外III和近红外IV低损耗生物窗口中获益。我们以谐波掺杂镁的铌酸锂纳米颗粒为例,通过研究1200至2400nm范围内的近红外激发到近红外发射转换和成像来解决这一任务:(i)使用非线性漫反射飞秒脉冲反射仪,(ii)使用可调谐高能量(TIGER)宽视场显微镜。考虑到谐波产生,我们成功证明了在该光谱区域中存在适当的激发/发射配置。此外,分别使用1.6 - 1.8μm和2.1 - 2.2μm的激发波长,展示了基于二次谐波产生(SHG)的从近红外III到近红外I以及基于三次谐波产生(THG)的从近红外IV到近红外I的最显著配置的近红外成像。讨论了该方法的优点以及利用和频产生(SFG)和差频产生(DFG)将发射范围进一步扩展至2400nm的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f14/8706685/1b6a8eb557c8/nanomaterials-11-03193-g001.jpg

相似文献

3
6
Aggregation-Induced Nonlinear Optical Effects of AIEgen Nanocrystals for Ultradeep In Vivo Bioimaging.
Adv Mater. 2019 Nov;31(44):e1904799. doi: 10.1002/adma.201904799. Epub 2019 Sep 16.
7
Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm.
Nanoscale Horiz. 2016 May 25;1(3):168-184. doi: 10.1039/c5nh00073d. Epub 2016 Jan 14.
9
Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.
ACS Nano. 2016 Sep 27;10(9):8423-33. doi: 10.1021/acsnano.6b03288. Epub 2016 Sep 7.

引用本文的文献

1
Extended shortwave infrared absorbing antiaromatic fluorenium-indolizine chromophores.
Chem Sci. 2024 Jul 12;15(31):12349-12360. doi: 10.1039/d4sc00733f. eCollection 2024 Aug 7.

本文引用的文献

1
Multiorder Nonlinear Mixing in Metal Oxide Nanoparticles.
Nano Lett. 2020 Dec 9;20(12):8725-8732. doi: 10.1021/acs.nanolett.0c03559. Epub 2020 Nov 24.
2
Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm.
Nanoscale Horiz. 2016 May 25;1(3):168-184. doi: 10.1039/c5nh00073d. Epub 2016 Jan 14.
3
Recent Progress in NIR-II Contrast Agent for Biological Imaging.
Front Bioeng Biotechnol. 2020 Jan 30;7:487. doi: 10.3389/fbioe.2019.00487. eCollection 2019.
4
Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications.
J Biophotonics. 2018 Dec;11(12):e201800141. doi: 10.1002/jbio.201800141. Epub 2018 Sep 7.
7
8
Short wavelength infrared optical windows for evaluation of benign and malignant tissues.
J Biomed Opt. 2017 Apr 1;22(4):45002. doi: 10.1117/1.JBO.22.4.045002.
10
Transmission in near-infrared optical windows for deep brain imaging.
J Biophotonics. 2016 Jan;9(1-2):38-43. doi: 10.1002/jbio.201500192. Epub 2015 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验