Suppr超能文献

基于用户生成内容的当代社会年轻员工压力源研究。

Investigating Young Employee Stressors in Contemporary Society Based on User-Generated Contents.

机构信息

Department of Information Management, School of Management, Shanghai University, Shanghai 200444, China.

出版信息

Int J Environ Res Public Health. 2021 Dec 12;18(24):13109. doi: 10.3390/ijerph182413109.

Abstract

Understanding stressors is an effective measure to decrease employee stress and improve employee mental health. The extant literature mainly focuses on a singular stressor among various aspects of their work or life. In addition, the extant literature generally uses questionnaires or interviews to obtain data. Data obtained in such ways are often subjective and lack authenticity. We propose a novel machine-human hybrid approach to conduct qualitative content analysis of user-generated online content to explore the stressors of young employees in contemporary society. The user-generated online contents were collected from a famous Q&A platform in China and we adopted natural language processing and deep learning technology to discover knowledge. Our results identified three kinds of new stressors, that is, affection from leaders, affection from the social circle, and the gap between dream and reality. These new identified stressors were due to the lack of social security and regulation, frequent occurrences of social media fearmongering, and subjective cognitive bias, respectively. In light of our findings, we offer valuable practical insights and policy recommendations to relieve stress and improve mental health of young employees. The primary contributions of our work are two-fold, as follows. First, we propose a novel approach to explore the stressors of young employees in contemporary society, which is applicable not only in China, but also in other countries and regions. Second, we expand the scope of job demands-resources (JD-R) theory, which is an important framework for the classification of employee stressors.

摘要

了解压力源是降低员工压力和改善员工心理健康的有效措施。现有文献主要集中在工作或生活的各个方面的单一压力源上。此外,现有文献通常使用问卷或访谈来获取数据。以这种方式获得的数据往往是主观的,缺乏真实性。我们提出了一种新的人机混合方法,对用户生成的在线内容进行定性内容分析,以探索当代社会中年轻员工的压力源。用户生成的在线内容是从中国著名的问答平台上收集的,我们采用自然语言处理和深度学习技术来发现知识。我们的研究结果确定了三种新的压力源,即来自领导的情感、来自社交圈的情感以及梦想与现实之间的差距。这些新确定的压力源分别是由于社会保障和监管的缺乏、社交媒体的恐惧事件频繁发生以及主观认知偏差所致。根据我们的研究结果,我们为缓解年轻员工的压力和改善他们的心理健康提供了有价值的实践见解和政策建议。我们工作的主要贡献有两个方面。首先,我们提出了一种新的方法来探索当代社会中年轻员工的压力源,这种方法不仅适用于中国,也适用于其他国家和地区。其次,我们扩展了工作要求-资源(JD-R)理论的范围,该理论是员工压力源分类的重要框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41a8/8701194/639e248abfbb/ijerph-18-13109-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验