Suppr超能文献

基于 SSHVEP 范式的脑控机器人抓取方法,使用 MVMD 结合 CNN 模型。

The SSHVEP Paradigm-Based Brain Controlled Method for Grasping Robot Using MVMD Combined CNN Model.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:2564-2578. doi: 10.1109/TNSRE.2024.3425636. Epub 2024 Jul 19.

Abstract

In recent years, the steady-state visual evoked potentials (SSVEP) based brain control method has been employed to help people with disabilities because of its advantages of high information transmission rate and low training time. However, the existing SSVEP brain control methods cannot adapt to dynamic or unstructured environments. Moreover, the recognition accuracy from the conventional decoding algorithm still needs to improve. To address the above problems, this study proposed a steady-state hybrid visual evoked potentials (SSHVEP) paradigm using the grasping targets in their environment to improve the connection between the subjects' and their dynamic environments. Moreover, a novel EEG decoding method, using the multivariate variational mode decomposition (MVMD) algorithm for adaptive sub-band division and convolutional neural network (CNN) for target recognition, was applied to improve the decoding accuracy of the SSHVEPs. 18 subjects participated in the offline and online experiments. The offline accuracy across 18 subjects by the 9-target SSHVEP paradigm was up to 95.41 ± 2.70 %, which is a 5.80% improvement compared to the conventional algorithm. To further validate the performance of the proposed method, the brain-controlled grasping robot system using the SSHVEP paradigm was built. The average accuracy reached 93.21 ± 10.18 % for the online experiment. All the experimental results demonstrated the effectiveness of the brain-computer interaction method based on the SSHVEP paradigm and the MVMD combined CNN algorithm studied in this paper.

摘要

近年来,基于稳态视觉诱发电位(SSVEP)的脑控方法因其信息传输率高、训练时间短等优点,被应用于帮助残疾人。然而,现有的 SSVEP 脑控方法无法适应动态或非结构化的环境。此外,传统解码算法的识别精度仍有待提高。针对上述问题,本研究提出了一种基于稳态混合视觉诱发电位(SSHVEP)的范式,使用环境中的抓取目标来增强主体与动态环境之间的联系。此外,还应用了一种新的 EEG 解码方法,使用多变量变分模态分解(MVMD)算法进行自适应子带划分和卷积神经网络(CNN)进行目标识别,以提高 SSHVEPs 的解码精度。18 名受试者参与了离线和在线实验。在 9 目标 SSHVEP 范式中,18 名受试者的离线准确率高达 95.41 ± 2.70%,与传统算法相比提高了 5.80%。为了进一步验证该方法的性能,我们构建了基于 SSHVEP 范式的脑控抓取机器人系统。在线实验的平均准确率达到了 93.21 ± 10.18%。所有实验结果均表明,本文所研究的基于 SSHVEP 范式和 MVMD 结合 CNN 算法的脑机交互方法是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验