Suppr超能文献

脑转移的晚期非小细胞肺癌患者的基因组和 DNA 甲基化综合分析。

Integrated genomic and DNA methylation analysis of patients with advanced non-small cell lung cancer with brain metastases.

机构信息

Department of Medical Thoracic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, No. 1 East Banshan Road, Gongshu District, Hangzhou, 310022, China.

出版信息

Mol Brain. 2021 Dec 24;14(1):176. doi: 10.1186/s13041-021-00886-4.

Abstract

BACKGROUND

Brain metastasis is a common and lethal complication of non-small cell lung cancer (NSCLC). It is mostly diagnosed only after symptoms develop, at which point very few treatment options are available. Therefore, patients who have an increased risk of developing brain metastasis need to be identified early. Our study aimed to identify genomic and epigenomic biomarkers for predicting brain metastasis risk in NSCLC patients.

METHODS

Paired primary lung tumor tissues and either brain metastatic tissues or cerebrospinal fluid (CSF) samples were collected from 29 patients with treatment-naïve advanced NSCLC with central nervous system (CNS) metastases. A control group comprising 31 patients with advanced NSCLC who died without ever developing CNS metastasis was also included. Somatic mutations and DNA methylation levels were examined through capture-based targeted sequencing with a 520-gene panel and targeted bisulfite sequencing with an 80,672 CpG panel.

RESULTS

Compared to primary lung lesions, brain metastatic tissues harbored numerous unique copy number variations. The tumor mutational burden was comparable between brain metastatic tissue (P = 0.168)/CSF (P = 0.445) and their paired primary lung tumor samples. Kelch-like ECH-associated protein (KEAP1) mutations were detected in primary lung tumor and brain metastatic tissue samples of patients with brain metastasis. KEAP1 mutation rate was significantly higher in patients with brain metastasis than those without (P = 0.031). DNA methylation analysis revealed 15 differentially methylated blocks between primary lung tumors of patients with and without CNS metastasis. A brain metastasis risk prediction model based on these 15 differentially methylated blocks had an area under the curve of 0.94, with 87.1% sensitivity and 82.8% specificity.

CONCLUSIONS

Our analyses revealed 15 differentially methylated blocks in primary lung tumor tissues, which can differentiate patients with and without CNS metastasis. These differentially methylated blocks may serve as predictive biomarkers for the risk of developing CNS metastasis in NSCLC. Additional larger studies are needed to validate the predictive value of these markers.

摘要

背景

脑转移是非小细胞肺癌(NSCLC)的一种常见且致命的并发症。通常只有在出现症状后才能确诊,此时治疗选择非常有限。因此,需要早期识别出有发生脑转移风险的患者。我们的研究旨在确定预测 NSCLC 患者脑转移风险的基因组和表观基因组生物标志物。

方法

收集了 29 例初治晚期伴中枢神经系统(CNS)转移的 NSCLC 患者的配对原发肺部肿瘤组织以及脑转移组织或脑脊液(CSF)样本,还纳入了 31 例晚期 NSCLC 患者的对照组,这些患者死亡时从未发生过 CNS 转移。通过基于捕获的靶向测序用 520 个基因面板和靶向亚硫酸氢盐测序用 80672 个 CpG 面板检测体细胞突变和 DNA 甲基化水平。

结果

与原发性肺病变相比,脑转移组织中存在许多独特的拷贝数变异。脑转移组织(P=0.168)/CSF(P=0.445)与其配对的原发性肺部肿瘤样本之间的肿瘤突变负担相当。KEAP1 基因突变在脑转移患者的原发性肺肿瘤和脑转移组织样本中均有检出。脑转移患者的 KEAP1 突变率显著高于无脑转移患者(P=0.031)。DNA 甲基化分析显示,有 CNS 转移和无脑转移的患者的原发性肺肿瘤之间存在 15 个差异甲基化块。基于这 15 个差异甲基化块的脑转移风险预测模型的曲线下面积为 0.94,灵敏度为 87.1%,特异性为 82.8%。

结论

我们的分析显示,原发性肺肿瘤组织中有 15 个差异甲基化块,可区分有和无脑转移的患者。这些差异甲基化块可能作为 NSCLC 患者发生 CNS 转移风险的预测生物标志物。需要更大规模的研究来验证这些标志物的预测价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/8710019/a572d4894783/13041_2021_886_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验