Suppr超能文献

基于 ChIP-seq 数据的模式植物基因组中多个转录因子结合的统计估计。

Statistical estimates of multiple transcription factors binding in the model plant genomes based on ChIP-seq data.

机构信息

Novosibirsk State University, 630090 Novosibirsk, Russia.

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.

出版信息

J Integr Bioinform. 2021 Dec 21;19(1):20200036. doi: 10.1515/jib-2020-0036.

Abstract

The development of high-throughput genomic sequencing coupled with chromatin immunoprecipitation technologies allows studying the binding sites of the protein transcription factors (TF) in the genome scale. The growth of data volume on the experimentally determined binding sites raises qualitatively new problems for the analysis of gene expression regulation, prediction of transcription factors target genes, and regulatory gene networks reconstruction. Genome regulation remains an insufficiently studied though plants have complex molecular regulatory mechanisms of gene expression and response to environmental stresses. It is important to develop new software tools for the analysis of the TF binding sites location and their clustering in the plant genomes, visualization, and the following statistical estimates. This study presents application of the analysis of multiple TF binding profiles in three evolutionarily distant model plant organisms. The construction and analysis of non-random ChIP-seq binding clusters of the different TFs in mammalian embryonic stem cells were discussed earlier using similar bioinformatics approaches. Such clusters of TF binding sites may indicate the gene regulatory regions, enhancers and gene transcription regulatory hubs. It can be used for analysis of the gene promoters as well as a background for transcription networks reconstruction. We discuss the statistical estimates of the TF binding sites clusters in the model plant genomes. The distributions of the number of different TFs per binding cluster follow same power law distribution for all the genomes studied. The binding clusters in genome were discussed here in detail.

摘要

高通量基因组测序技术与染色质免疫沉淀技术的发展使得研究蛋白质转录因子(TF)在基因组范围内的结合位点成为可能。实验确定的结合位点的数据量的增长给基因表达调控的分析、转录因子靶基因的预测以及调控基因网络的重建带来了定性的新问题。尽管植物具有复杂的分子基因表达调控机制和对环境胁迫的反应机制,但基因组调控仍然是一个研究不足的领域。开发用于分析 TF 结合位点位置及其在植物基因组中的聚类、可视化和后续统计估计的新软件工具非常重要。本研究应用于分析三种进化上相距甚远的模式植物生物体内的多个 TF 结合谱。早前使用类似的生物信息学方法讨论了哺乳动物胚胎干细胞中不同 TF 的 ChIP-seq 结合峰的构建和分析。这些 TF 结合位点的聚类可能表明基因调控区域、增强子和基因转录调控枢纽。它可用于分析基因启动子,以及转录网络重建的背景。我们讨论了模型植物基因组中 TF 结合位点聚类的统计估计。所有研究的基因组中,每个结合峰的不同 TF 的数量分布遵循相同的幂律分布。本文详细讨论了 基因组中的结合峰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b189/9069649/f1ffa294f37e/j_jib-2020-0036_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验