Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Biophys J. 2021 Feb 2;120(3):504-516. doi: 10.1016/j.bpj.2020.11.2277. Epub 2020 Dec 25.
In three-dimensional domain swapping, two protein monomers exchange a part of their structures to form an intertwined homodimer, whose subunits resemble the monomer. Several viral proteins domain swap to increase their structural complexity or functional avidity. The main protease (M) of the severe acute respiratory syndrome (SARS) coronavirus proteolyzes viral polyproteins and has been a target for anti-SARS drug design. Domain swapping in the α-helical C-terminal domain of M (MC) locks M into a hyperactive octameric form that is hypothesized to promote the early stages of viral replication. However, in the absence of a complete molecular understanding of the mechanism of domain swapping, investigations into the biological relevance of this octameric M have stalled. Isolated MC can exist as a monomer or a domain-swapped dimer. Here, we investigate the mechanism of domain swapping of MC using coarse-grained structure-based models and molecular dynamics simulations. Our simulations recapitulate several experimental features of MC folding. Further, we find that a contact between a tryptophan in the MC domain-swapping hinge and an arginine elsewhere forms early during folding, modulates the folding route, and promotes domain swapping to the native structure. An examination of the sequence and the structure of the tryptophan containing hinge loop shows that it has a propensity to form multiple secondary structures and contacts, indicating that it could be stabilized into either the monomer- or dimer-promoting conformations by mutations or ligand binding. Finally, because all residues in the tryptophan loop are identical in SARS-CoV and SARS-CoV-2, mutations that modulate domain swapping may provide insights into the role of octameric M in the early-stage viral replication of both viruses.
在三维结构域交换中,两个蛋白质单体交换其结构的一部分以形成相互交织的同源二聚体,其亚基类似于单体。几种病毒蛋白通过结构域交换来增加其结构复杂性或功能亲和力。严重急性呼吸综合征(SARS)冠状病毒的主要蛋白酶(M)蛋白水解病毒多蛋白,一直是抗 SARS 药物设计的目标。M 的α-螺旋 C 末端结构域(MC)中的结构域交换将 M 锁定在超活跃的八聚体形式中,该形式假设可促进病毒复制的早期阶段。然而,在缺乏对结构域交换机制的完整分子理解的情况下,对这种八聚体 M 的生物学相关性的研究已经停滞不前。分离的 MC 可以以单体或结构域交换的二聚体形式存在。在这里,我们使用粗粒度结构基模型和分子动力学模拟研究 MC 的结构域交换机制。我们的模拟再现了 MC 折叠的几个实验特征。此外,我们发现 MC 结构域交换铰链中的色氨酸与其他地方的精氨酸之间的接触在折叠早期形成,调节折叠途径,并促进向天然结构的结构域交换。对含有色氨酸的铰链环的序列和结构的检查表明,它具有形成多种二级结构和接触的倾向,这表明它可以通过突变或配体结合稳定为单体或二聚体促进构象。最后,由于 SARS-CoV 和 SARS-CoV-2 中的色氨酸环中的所有残基都相同,因此调节结构域交换的突变可能会深入了解八聚体 M 在两种病毒早期病毒复制中的作用。