Suppr超能文献

利用自然语言处理技术对肯尼亚20年新闻中对政治领袖的性别偏见和情感进行量化分析。

Quantification of Gender Bias and Sentiment Toward Political Leaders Over 20 Years of Kenyan News Using Natural Language Processing.

作者信息

Pair Emma, Vicas Nikitha, Weber Ann M, Meausoone Valerie, Zou James, Njuguna Amos, Darmstadt Gary L

机构信息

Department of Pediatrics, Global Center for Gender Equality, School of Medicine, Stanford University, Stanford, CA, United States.

Department of Neuroscience, University of Texas - Dallas, Dallas, TX, United States.

出版信息

Front Psychol. 2021 Dec 10;12:712646. doi: 10.3389/fpsyg.2021.712646. eCollection 2021.

Abstract

Despite a 2010 Kenyan constitutional amendment limiting members of elected public bodies to < two-thirds of the same gender, only 22 percent of the 12th Parliament members inaugurated in 2017 were women. Investigating gender bias in the media is a useful tool for understanding socio-cultural barriers to implementing legislation for gender equality. Natural language processing (NLP) methods, such as word embedding and sentiment analysis, can efficiently quantify media biases at a scope previously unavailable in the social sciences. We trained GloVe and word2vec word embeddings on text from 1998 to 2019 from Kenya's newspaper. We measured gender bias in these embeddings and used sentiment analysis to predict quantitative sentiment scores for sentences surrounding female leader names compared to male leader names. Bias in leadership words for men and women measured from word embeddings corresponded to temporal trends in men and women's participation in political leadership (i.e., parliamentary seats) using GloVe (correlation 0.8936, = 0.0067, = 0.799) and word2vec (correlation 0.844, = 0.0169, = 0.712) algorithms. Women continue to be associated with domestic terms while men continue to be associated with influence terms, for both regular gender words and female and male political leaders' names. Male words (e.g., he, him, man) were mentioned 1.84 million more times than female words from 1998 to 2019. Sentiment analysis showed an increase in relative negative sentiment associated with female leaders ( = 0.0152) and an increase in positive sentiment associated with male leaders over time ( = 0.0216). Natural language processing is a powerful method for gaining insights into and quantifying trends in gender biases and sentiment in news media. We found evidence of improvement in gender equality but also a backlash from increased female representation in high-level governmental leadership.

摘要

尽管2010年肯尼亚宪法修正案将当选公共机构成员中同性别的比例限制在三分之二以内,但2017年就职的第12届议会议员中只有22%是女性。调查媒体中的性别偏见是理解实施性别平等立法的社会文化障碍的有用工具。自然语言处理(NLP)方法,如词嵌入和情感分析,可以在社会科学以前无法达到的范围内有效地量化媒体偏见。我们在1998年至2019年肯尼亚报纸的文本上训练了GloVe和word2vec词嵌入。我们测量了这些嵌入中的性别偏见,并使用情感分析来预测与男性领导人名字相比围绕女性领导人名字的句子的定量情感分数。从词嵌入中测量的男性和女性领导词汇的偏见与使用GloVe(相关性0.8936,p = 0.0067,r² = 0.799)和word2vec(相关性0.844,p = 0.0169,r² = 0.712)算法的男性和女性参与政治领导(即议会席位)的时间趋势相对应。对于常规性别词汇以及女性和男性政治领导人的名字,女性仍然与家庭相关词汇联系在一起,而男性仍然与有影响力的词汇联系在一起。1998年至2019年,男性词汇(如他、他的、男人)比女性词汇多被提及184万次。情感分析表明,与女性领导人相关的相对负面情绪有所增加(p = 0.0152),而与男性领导人相关的积极情绪随着时间的推移有所增加(p = 0.0216)。自然语言处理是一种强大的方法,可用于深入了解和量化新闻媒体中的性别偏见和情感趋势。我们发现了性别平等有所改善的证据,但也发现了高层政府领导中女性代表增加所带来的反弹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3295/8703202/fd431fb05b7d/fpsyg-12-712646-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验