Suppr超能文献

精神分裂症比抑郁症更具就业能力?基于语言的人工智能模型对精神疾病诊断、躯体疾病患者及健康对照者就业能力的评级

Schizophrenia more employable than depression? Language-based artificial intelligence model ratings for employability of psychiatric diagnoses and somatic and healthy controls.

作者信息

Lange Maximin, Koliousis Alexandros, Fayez Feras, Gogarty Eoin, Twumasi Ricardo

机构信息

Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.

Northeastern University, London, United Kingdom.

出版信息

PLoS One. 2025 Jan 8;20(1):e0315768. doi: 10.1371/journal.pone.0315768. eCollection 2025.

Abstract

Artificial Intelligence (AI) assists recruiting and job searching. Such systems can be biased against certain characteristics. This results in potential misrepresentations and consequent inequalities related to people with mental health disorders. Hence occupational and mental health bias in existing Natural Language Processing (NLP) models used in recruiting and job hunting must be assessed. We examined occupational bias against mental health disorders in NLP models through relationships between occupations, employability, and psychiatric diagnoses. We investigated Word2Vec and GloVe embedding algorithms through analogy questions and graphical representation of cosine similarities. Word2Vec embeddings exhibit minor bias against mental health disorders when asked analogies regarding employability attributes and no evidence of bias when asked analogies regarding high earning jobs. GloVe embeddings view common mental health disorders such as depression less healthy and less employable than severe mental health disorders and most physical health conditions. Overall, physical, and psychiatric disorders are seen as similarly healthy and employable. Both algorithms appear to be safe for use in downstream task without major repercussions. Further research is needed to confirm this. This project was funded by the London Interdisciplinary Social Science Doctoral Training Programme (LISS-DTP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

摘要

人工智能(AI)辅助招聘和求职。此类系统可能会对某些特征存在偏见。这会导致潜在的失实陈述以及与患有精神健康障碍的人相关的不平等现象。因此,必须评估在招聘和求职中使用的现有自然语言处理(NLP)模型中的职业和心理健康偏见。我们通过职业、就业能力和精神疾病诊断之间的关系,研究了NLP模型中对精神健康障碍的职业偏见。我们通过类比问题和余弦相似度的图形表示来研究Word2Vec和GloVe嵌入算法。当被问及关于就业能力属性的类比时,Word2Vec嵌入对精神健康障碍表现出轻微偏见,而当被问及关于高收入工作的类比时,没有偏见的证据。GloVe嵌入认为,诸如抑郁症等常见精神健康障碍比严重精神健康障碍和大多数身体健康状况更不健康且更难就业。总体而言,身体疾病和精神疾病被视为同样健康且具有同等就业能力。这两种算法在下游任务中使用似乎都是安全的,不会产生重大影响。需要进一步研究来证实这一点。该项目由伦敦跨学科社会科学博士培训计划(LISS-DTP)资助。资助者在研究设计、数据收集和分析、决定发表或撰写稿件方面没有参与。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a685/11709238/4964606ff552/pone.0315768.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验