Suppr超能文献

通过仿生工程纳米系统将 PARP 抑制剂靶向递送至创伤性脑损伤小鼠模型的神经元线粒体。

Targeted delivery of PARP inhibitors to neuronal mitochondria via biomimetic engineered nanosystems in a mouse model of traumatic brain injury.

机构信息

State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.

Biomedical Engineering Department, Peking University, Beijing 100191, China.

出版信息

Acta Biomater. 2022 Mar 1;140:573-585. doi: 10.1016/j.actbio.2021.12.023. Epub 2021 Dec 25.

Abstract

Traumatic brain injury (TBI) is known to activate poly (ADP-ribose) polymerase (PARP-1), which leads to pronounced negative effects on mitochondrial DNA (mt-DNA) repair and function. Notably, PARP inhibitors are reported to be beneficial in experimental models of TBI. A targeting strategy for the delivery of neuronal mitochondria-specific PARP inhibitors could result in a greater neuroprotective effect and be a safer approach for TBI treatment. In the present study, we developed the PARP inhibitor olaparib (Ola) as a model drug and devised red blood cell (RBC)-coated nanostructured lipid carriers (RBCNLCs) co-modified with C3 and SS31 peptide (C3/SS31-RBCNLCs) for brain neuronal mitochondria-targeting. Our results indicated that biomimetic nanosystems have the physical and chemical properties of the NLCs, as well as the biological properties of RBC. A high concentration of Ola delivered into brain mitochondria by C3/SS31-RBCNLCs-Ola effectively improved mitochondrial function and prevented neuronal cell death caused by excessive activation of injury-induced mitochondrial PARP (mt-PARP) in vitro and in vivo. Taken together, the results of this study support the preclinical feasibility of developing highly effective nano-drugs as part of precision medicine for TBI. STATEMENT OF SIGNIFICANCE: TBI-induced neuronal mitochondria DNA damage activates Poly(ADP-ribose) Polymerase (PARP1) which leads to a pronounced negative effect on mitochondrial DNA repair and mitochondrial function. In recent years, PARP inhibitors showed strong benefits in experimental models of TBI, more importantly PARP inhibitors specially target neuronal mitochondria may play a greater neuroprotective role and may be a safer approach for TBI treatment. Herein, we designed red blood cell (RBC) membrane-coated nanostructure lipid carriers dual-modified with C3 and SS31 (C3/SS31-RBCNLCs) to accomplish these objectives. After encapsulating Olaparib (Ola) as the model PARP inhibitor, the data demonstrated that C3/SS31-RBCNLCs, with brain neuronal mitochondria targeting, can reduce neuronal cell death and improve mitochondrial dysfunction triggered by mitochondrial PARP activation in vitro and in vivo.

摘要

创伤性脑损伤(TBI)已知可激活多聚(ADP-核糖)聚合酶(PARP-1),这会对线粒体 DNA(mt-DNA)修复和功能产生明显的负面影响。值得注意的是,PARP 抑制剂在 TBI 的实验模型中被报道是有益的。神经元线粒体特异性 PARP 抑制剂的靶向传递策略可能会产生更大的神经保护作用,并成为 TBI 治疗的更安全方法。在本研究中,我们开发了 PARP 抑制剂奥拉帕利(Ola)作为模型药物,并设计了用 C3 和 SS31 肽(C3/SS31-RBCNLCs)共修饰的红细胞(RBC)包裹的纳米结构脂质载体(RBCNLCs),用于脑神经元线粒体靶向。我们的结果表明,仿生纳米系统具有 NLC 的物理和化学性质以及 RBC 的生物学性质。通过 C3/SS31-RBCNLCs-Ola 将高浓度的 Ola 递送到脑线粒体中,可有效改善线粒体功能,并防止体外和体内由损伤诱导的线粒体 PARP(mt-PARP)过度激活引起的神经元细胞死亡。总之,这项研究的结果支持了开发高效纳米药物作为 TBI 精准医学的一部分的临床前可行性。

创伤性脑损伤(TBI)引起的神经元线粒体 DNA 损伤激活多聚(ADP-核糖)聚合酶(PARP1),这会导致线粒体 DNA 修复和线粒体功能明显受损。近年来,PARP 抑制剂在 TBI 的实验模型中显示出强大的益处,更重要的是,专门针对神经元线粒体的 PARP 抑制剂可能发挥更大的神经保护作用,并可能成为 TBI 治疗的更安全方法。在这里,我们设计了用 C3 和 SS31 双重修饰的红细胞(RBC)膜包裹的纳米结构脂质载体(C3/SS31-RBCNLCs)来实现这些目标。封装奥拉帕利(Ola)作为模型 PARP 抑制剂后,数据表明,具有脑神经元线粒体靶向性的 C3/SS31-RBCNLCs 可以减少体外和体内由线粒体 PARP 激活引发的神经元细胞死亡和改善线粒体功能障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验