Swaidan Raja, Ghanem Bader, Pinnau Ingo
Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
ACS Macro Lett. 2015 Sep 15;4(9):947-951. doi: 10.1021/acsmacrolett.5b00512. Epub 2015 Aug 20.
Intrinsically ultramicroporous (<7 Å) polymers represent a new paradigm in materials development for membrane-based gas separation. In particular, they demonstrate that uniting intrachain "rigidity", the traditional design metric of highly permeable polymers of intrinsic microporosity (PIMs), with gas-sieving ultramicroporosity yields high-performance gas separation membranes. Highly ultramicroporous PIMs have redefined the state-of-the-art in large-scale air (e.g., O/N) and hydrogen recovery (e.g., H/N, H/CH) applications with unprecedented molecular sieving gas transport properties. Accordingly, presented herein are new 2015 permeability/selectivity "upper bounds" for large-scale commercial membrane-based air and hydrogen applications that accommodate the substantial performance enhancements of recent PIMs over preceding polymers. A subtle balance between intrachain rigidity and interchain spacing has been achieved in the amorphous microstructures of PIMs, fine-tuned using unique bridged-bicyclic building blocks (i.e., triptycene, ethanoanthracene and Tröger's base) in both ladder and semiladder (e.g., polyimide) structures.
本征超微孔(<7 Å)聚合物代表了基于膜的气体分离材料开发的新范式。特别是,它们表明,将链内“刚性”(本征微孔聚合物(PIMs)这种高渗透性聚合物的传统设计指标)与气体筛分超微孔相结合,可产生高性能的气体分离膜。高度超微孔的PIMs凭借前所未有的分子筛分气体传输特性,重新定义了大规模空气(如O₂/N₂)和氢气回收(如H₂/N₂、H₂/CH₄)应用中的技术水平。因此,本文给出了2015年基于膜的大规模商业空气和氢气应用的渗透率/选择性“上限”,这些上限考虑了近期PIMs相对于先前聚合物在性能上的大幅提升。在PIMs的无定形微结构中,通过在梯形和半梯形(如聚酰亚胺)结构中使用独特的桥连双环结构单元(即三蝶烯、二氢蒽和特罗格碱)进行微调,实现了链内刚性和链间距之间的微妙平衡。