IEEE Trans Neural Syst Rehabil Eng. 2022;30:20-29. doi: 10.1109/TNSRE.2021.3139095. Epub 2022 Jan 28.
The motor imagery (MI) based brain-computer interfaces (BCIs) have been proposed as a potential physical rehabilitation technology. However, the low classification accuracy achievable with MI tasks is still a challenge when building effective BCI systems. We propose a novel MI classification model based on measurement of functional connectivity between brain regions and graph theory. Specifically, motifs describing local network structures in the brain are extracted from functional connectivity graphs. A graph embedding model called Ego-CNNs is then used to build a classifier, which can convert the graph from a structural representation to a fixed-dimensional vector for detecting critical structure in the graph. We validate our proposed method on four datasets, and the results show that our proposed method produces high classification accuracies in two-class classification tasks (92.8% for dataset 1, 93.4% for dataset 2, 96.5% for dataset 3, and 80.2% for dataset 4) and multiclass classification tasks (90.33% for dataset 1). Our proposed method achieves a mean Kappa value of 0.88 across nine participants, which is superior to other methods we compared it to. These results indicate that there is a local structural difference in functional connectivity graphs extracted under different motor imagery tasks. Our proposed method has great potential for motor imagery classification in future studies.
基于运动想象的脑-机接口 (BCI) 已经被提出作为一种潜在的物理康复技术。然而,在构建有效的 BCI 系统时,基于运动想象任务的低分类准确性仍然是一个挑战。我们提出了一种基于脑区功能连接和图论测量的新型运动想象分类模型。具体来说,从功能连接图中提取描述大脑局部网络结构的基元。然后使用称为 Ego-CNNs 的图嵌入模型构建分类器,该分类器可以将图从结构表示转换为固定维向量,以检测图中的关键结构。我们在四个数据集上验证了我们提出的方法,结果表明,我们提出的方法在两类分类任务(数据集 1 的分类准确率为 92.8%,数据集 2 的分类准确率为 93.4%,数据集 3 的分类准确率为 96.5%,数据集 4 的分类准确率为 80.2%)和多类分类任务(数据集 1 的分类准确率为 90.33%)中都产生了较高的分类精度。我们提出的方法在九名参与者中平均 Kappa 值为 0.88,优于我们比较的其他方法。这些结果表明,在不同的运动想象任务下提取的功能连接图中存在局部结构差异。我们提出的方法在未来的研究中具有很大的运动想象分类潜力。