Sorbonne Université, CNRS, PHysico-chimie des Électrolytes et Nanosystèmes InterfaciauX (PHENIX), F-75005 Paris, France.
Université du Maine, UMR CNRS 6283, Institut des Molécules et Matériaux du Mans (IMMM), Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France.
ACS Nano. 2022 Jan 25;16(1):271-284. doi: 10.1021/acsnano.1c06212. Epub 2021 Dec 28.
Magnetite and maghemite multicore nanoflowers (NFs) synthesized using the modified polyol-mediated routes are to date among the most effective nanoheaters in magnetic hyperthermia (MHT). Recently, magnetite NFs have also shown high photothermal (PT) performances in the most desired second near-infrared (NIR-II) biological window, making them attractive in the field of nanoparticle-activated thermal therapies. However, what makes magnetic NFs efficient heating agents in both modalities still remains an open question. In this work, we investigate the role of many parameters of the polyol synthesis on the final NFs' size, shape, chemical composition, number of cores, and crystallinity. These nanofeatures are later correlated to the magnetic, optical, and electronic properties of the NFs as well as their collective macroscopic thermal properties in MHT and PT to find relationships between their structure, properties, and function. We evidence the critical role of iron(III) and heating ramps on the elaboration of well-defined NFs with a high number of multicores. While MHT efficiency is found to be proportional to the average number of magnetic cores within the assemblies, the optical responses of the NFs and their collective photothermal properties depend directly on the mean volume of the NFs (as supported by optical cross sections numerical simulations) and strongly on the structural disorder in the NFs, rather than the stoichiometry. The concentration of defects in the nanostructures, evaluated by photoluminescence and Urbach energy (), evidence a switch in the optical behavior for a limit value of = 0.4 eV where a discontinuous transition from high to poor PT efficiency is also observed.
采用改进的多元醇介导法合成的磁铁矿和磁赤铁矿多核纳米花(NFs)是迄今为止在磁热疗(MHT)中最有效的纳米加热器之一。最近,磁铁矿 NFs 在最理想的近红外二区(NIR-II)生物窗口中也表现出了很高的光热(PT)性能,这使得它们在纳米颗粒激活热疗领域具有吸引力。然而,是什么使磁性 NFs 在两种模式下都成为有效的加热剂,这仍然是一个悬而未决的问题。在这项工作中,我们研究了多元醇合成中许多参数对最终 NFs 尺寸、形状、化学成分、核数和结晶度的影响。这些纳米特征与 NFs 的磁性、光学和电子特性以及它们在 MHT 和 PT 中的集体宏观热特性相关联,以发现它们的结构、性能和功能之间的关系。我们证明了铁(III)和加热斜坡在制备具有高多核数的定义明确的 NFs 方面的关键作用。虽然 MHT 效率被发现与组装体中平均磁核数成正比,但 NFs 的光学响应及其集体光热特性直接取决于 NFs 的平均体积(由光学截面数值模拟支持),并且强烈依赖于 NFs 中的结构无序,而不是化学计量。通过光致发光和 Urbach 能()评估的纳米结构中的缺陷浓度表明,在 = 0.4 eV 的极限值处,光学行为发生了转变,同时也观察到从高光热效率到低效率的不连续转变。