Department of Chemical and Materials and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan.
Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan.
Int J Mol Sci. 2020 Jul 22;21(15):5187. doi: 10.3390/ijms21155187.
In this work, we aimed to develop liposomal nanocomposites containing citric-acid-coated iron oxide magnetic nanoparticles (CMNPs) for dual magneto-photothermal cancer therapy induced by alternating magnetic field (AMF) and near-infrared (NIR) lasers. Toward this end, CMNPs were encapsulated in cationic liposomes to form nano-sized magnetic liposomes (MLs) for simultaneous magnetic hyperthermia (MH) in the presence of AMF and photothermia (PT) induced by NIR laser exposure, which amplified the heating efficiency for dual-mode cancer cell killing and tumor therapy. Since the heating capability is directly related to the amount of entrapped CMNPs in MLs, while the liposome size is important to allow internalization by cancer cells, response surface methodology was utilized to optimize the preparation of MLs by simultaneously maximizing the encapsulation efficiency (EE) of CMNPs in MLs and minimizing the size of MLs. The experimental design was performed based on the central composite rotatable design. The accuracy of the model was verified from the validation experiments, providing a simple and effective method for fabricating the best MLs, with an EE of 87% and liposome size of 121 nm. The CMNPs and the optimized MLs were fully characterized from chemical and physical perspectives. In the presence of dual AMF and NIR laser treatment, a suspension of MLs demonstrated amplified heat generation from dual hyperthermia (MH)-photothermia (PT) in comparison with single MH or PT. In vitro cell culture experiments confirmed the efficient cellular uptake of the MLs from confocal laser scanning microscopy due to passive accumulation in human glioblastoma U87 cells originated from the cationic nature of MLs. The inducible thermal effects mediated by MLs after endocytosis also led to enhanced cytotoxicity and cumulative cell death of cancer cells in the presence of AMF-NIR lasers. This functional nanocomposite will be a potential candidate for bimodal MH-PT dual magneto-photothermal cancer therapy.
在这项工作中,我们旨在开发含有柠檬酸包覆的氧化铁磁性纳米颗粒(CMNPs)的脂质体纳米复合材料,用于交变磁场(AMF)和近红外(NIR)激光诱导的双重磁光热癌症治疗。为此,CMNPs 被包封在阳离子脂质体中,形成纳米级磁性脂质体(MLs),以便在存在 AMF 的情况下进行磁热疗(MH)和在近红外激光照射下进行光热疗(PT),从而放大了用于双重模式癌细胞杀伤和肿瘤治疗的加热效率。由于加热能力与 MLs 中包封的 CMNPs 的量直接相关,而脂质体的大小对于允许癌细胞内化是很重要的,因此响应面法被用于通过同时最大化 MLs 中 CMNPs 的包封效率(EE)和最小化 MLs 的尺寸来优化 MLs 的制备。实验设计基于中心复合旋转设计。从验证实验中验证了模型的准确性,为制造最佳 MLs 提供了一种简单有效的方法,其 EE 为 87%,脂质体尺寸为 121nm。从化学和物理角度对 CMNPs 和优化后的 MLs 进行了全面表征。在存在双重 AMF 和 NIR 激光处理的情况下,与单一 MH 或 PT 相比,MLs 悬浮液表现出了增强的双重热疗(MH-光疗(PT))的热产生。体外细胞培养实验证实了由于 MLs 的阳离子性质,通过共聚焦激光扫描显微镜从被动积累在人胶质母细胞瘤 U87 细胞中可以高效摄取 MLs。内吞作用后 MLs 介导的诱导热效应也导致在 AMF-NIR 激光存在下增强了癌细胞的细胞毒性和累积细胞死亡。这种功能纳米复合材料将成为双模态 MH-PT 双重磁光热癌症治疗的潜在候选者。